Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Hazard Mater ; 401: 123280, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32653781

RESUMO

Numerous biological treatment techniques have been studied for better management of high-strength livestock urine and manure (LUM) but it is still challenging. To gain an advanced option for LUM management, this study proposes a physicochemical process combining microfiltration (MF) and cold plasma (CP). Experimental design applying single CP, single MF, and the integrated system coupling CP and MF (CP + MF) evaluates the performances of the configurations while reducing hydraulic retention time (HRT) from 3 d to 1 d. Results demonstrate that the CP + MF can maximize the removal efficiencies of total nitrogen (72.4 %), total phosphorus (57.8 %), NH4-N (73.3 %), turbidity (99.1 %), dissolved organic carbon (71.3 %), suspended solids (98.7 %) at HRT 3 d. It was verified that CP, even at the lowest HRT (1 d), significantly reduces membrane resistance (0.4 × 1014 m-1) compared to the control (1.5 × 1014 m-1) which leads to lower transmembrane pressure (TMP, 45.6 kPa) and inclined flux (4.4 L/m2/h) than those of the control (45.6 kPa TMP and 2.2 L/m2/h). These results contribute to the advanced treatment of LUM with a cost-effective and environmentally friendly strategy via technical convergence.


Assuntos
Gases em Plasma , Animais , Reatores Biológicos , Carbono , Gado , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...