Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Medicine (Baltimore) ; 103(17): e37980, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669362

RESUMO

The aim of this observational study was to investigate the effects of catechol-O-methyltransferase (COMT) and ATP-binding cassette transporter B1 (ABCB1) gene polymorphisms on the postoperative analgesic effect of sufentanil in Chinese Han pediatric patients with fractures. A total of 185 pediatric patients who underwent fracture surgery were included. Polymerase chain reaction-restriction fragment length polymorphism was used to detect the polymorphisms of COMT and ABCB1 genes. Sufentanil was used for postoperative analgesia. The pain level of the patients was evaluated using the face, legs, activity, cry, and consolability scale before surgery, during awakening, at 2, 6, 12, and 24 hours after surgery. The postoperative Ramsay sedation score, sufentanil consumption, and incidence of adverse reactions were also recorded. Pediatric patients with different genotypes of ABCB1 and COMT showed no statistically significant differences in general data such as age, gender, weight, height, surgical duration, and American Society of Anesthesiologists classification (P > .05). There were no statistically significant differences in sedation scores after surgery between different genotypes of ABCB1 and COMT (P > .05). Among patients with CC genotype in ABCB1, the pain scores and total consumption of sufentanil at awakening, 2 and 6 hours after surgery were higher compared to TT and CT genotypes (P < .05), while there were no statistically significant differences between TT and CT genotypes (P > .05). Among patients with AA genotype in COMT, the pain scores and total consumption of sufentanil at awakening, 2, 6, 12, and 24 hours after surgery were higher compared to AG and GG genotypes (P < .05), while there were no statistically significant differences between AG and GG genotypes (P > .05). There were no statistically significant differences in adverse reactions between different genotypes of ABCB1 and COMT (P > .05). The polymorphisms of COMT gene rs4680 and ABCB1 gene rs1045642 are associated with the analgesic effect and consumption of sufentanil in pediatric patients after fracture surgery.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Analgésicos Opioides , Catecol O-Metiltransferase , Fraturas Ósseas , Dor Pós-Operatória , Sufentanil , Humanos , Sufentanil/uso terapêutico , Sufentanil/administração & dosagem , Catecol O-Metiltransferase/genética , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/genética , Masculino , Feminino , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Criança , Fraturas Ósseas/cirurgia , Fraturas Ósseas/genética , Analgésicos Opioides/uso terapêutico , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Genótipo , Pré-Escolar , Medição da Dor , Polimorfismo Genético , Adolescente , Polimorfismo de Nucleotídeo Único
2.
Int Immunopharmacol ; 130: 111678, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38368773

RESUMO

Aldosterone is a key mineralocorticoid involved in regulating the concentration of blood electrolytes and physiological volume balance. Activation of mineralocorticoid receptor (MR) has been recently reported to participate in adaptive and innate immune responses under inflammation. Here, we evaluated the role of aldosterone and MR in inflammation bowel diseases (IBD). Aldosterone elevated in the colon of DSS-induced colitis mice. Aldosterone addition induced IL17 production and ROS/RNS level in group 3 innate lymphoid cells (ILC3s) and exacerbated intestinal injury. A selective mineralocorticoid receptor antagonism, eplerenone, inhibited IL17-producing ILC3s and its ROS/RNS production, protected mice from DSS-induced colitis. Mice lacking Nr3c2 (MR coding gene) in ILC3s exhibited decreased IL17 and ROS/RNS production, which alleviated colitis and colitis-associated colorectal cancer (CAC). Further experiments revealed that MR could directly bind to IL17A promoter and facilitate its transcription, which could be enhanced by aldosterone. Thus, our findings demonstrated the critical role of aldosterone-MR-IL17 signaling in ILC3s and gut homeostasis, indicating the therapeutic strategy of eplerenone in IBD clinical trial.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Camundongos , Animais , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/metabolismo , Eplerenona , Mineralocorticoides/metabolismo , Imunidade Inata , Espécies Reativas de Oxigênio/metabolismo , Linfócitos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação/metabolismo
3.
Exp Cell Res ; 433(2): 113854, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952573

RESUMO

Osteoarthritis (OA) is a common musculoskeletal disorder that impairs function and reduces the quality of life. Extracellular matrix (ECM) degradation and inflammatory mechanisms are crucial to the progression of OA. In this study, we aimed to investigate the anti-inflammatory activity, anti-ECM degradation property, and glucose transport capacity of quercitrin (QCT) on IL-1ß-treated rat primary chondrocytes. Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of QCT at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 5 µM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model through anterior cruciate ligament transection (ACLT). The animals were then periodically injected with QCT into the knee articular cavity. Our in vivo and in vitro study showed that QCT could inhibit IL-1ß-activated inflammation and ECM degradation in chondrocyte. Furthermore, QCT could inhibit the NF-κB signal pathway and enhance glucose transport capacity in the IL-1ß-stimulated chondrocytes. In vivo study proved that QCT attenuates OA progression in rats. Overall, QCT inhibited the activation of NF-κB and enhanced glucose transport capacity to alleviate the progression of OA.


Assuntos
NF-kappa B , Osteoartrite , Ratos , Animais , NF-kappa B/metabolismo , Qualidade de Vida , Células Cultivadas , Transdução de Sinais , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/metabolismo , Condrócitos/metabolismo , Glucose/farmacologia , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo
4.
iScience ; 26(8): 107414, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37554440

RESUMO

Platelets play an important role in the pathogenesis of sepsis and platelet transfusion is a therapeutic option for sepsis patients, although the exact mechanisms have not been elucidated so far. ITGA2B encodes the αIIb protein in platelets, and its upregulation in sepsis is associated with increased mortality rate. Here, we generated a Itga2b (Q887X) knockin mouse, which significantly reduced ITGA2B expression of platelet and megakaryocyte. The decrease of ITGA2B level aggravated the death of septic mice. We analyzed the transcriptomic profiles of the platelets using RNA sequencing. Our findings suggest that ITGA2B upregulates PTPN6 in megakaryocytes via the transcription factors Nfkb1 and Rel. Furthermore, PTPN6 inhibits platelet apoptosis and necroptosis during sepsis by targeting the Ripk1/Ripk3/Mlkl and caspase-8 pathways. This prevents Kupffer cells from rapidly clearing activated platelets, and eventually maintains vascular integrity during sepsis. Our findings indicate a new function of ITGA2B in the regulation of platelet death during sepsis.

5.
J Bone Oncol ; 41: 100493, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37501717

RESUMO

Osteosarcoma (OS) is the most common primary bone cancer in children and young adults, patient survival rates have not improved in recent decades. To further understand the interrelationship between different cell types in the tumor microenvironment of osteosarcoma, we comprehensively analyzed single-cell sequencing data from six patients with untreated osteosarcoma. Nine major cell types were identified from a total of 46,046 cells based on unbiased clustering of gene expression profiles and canonical markers. Osteosarcoma from different patients display heterogeneity in cellular composition. Myeloid cells were the most commonly represented cell type, followed by osteoblastic and TILs. Copy number variation (CNV) results identified amplifications and deletions in malignant osteoblastic cells and fibroblasts. Trajectory analysis based on RNA velocity showed that osteoclasts in the OS microenvironment could be differentiated from myeloid cells. Furthermore, we explored the intercellular communications in OS microenvironment and identified multiple ligand-receptor pairs between myeloid cells, osteoblastic cells and their cells, including 21 ligand-receptor pair genes that significantly associated with survival outcomes. Importantly, we found chemotherapy may have an effect on cellular communication in the OS microenvironment by analyzing single-cell sequencing data from seven primary osteosarcoma patients who received chemotherapy. We believe these observations will improve our understanding of potential mechanisms of microenvironment contributions to OS progression and help identify potential targets for new treatment development in the future.

6.
Small ; 19(40): e2302799, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37264755

RESUMO

Effective treatments for cartilage defects are currently lacking. Gene delivery using proper delivery systems has shown great potential in cartilage regeneration. However, the inflammatory microenvironment generated by the defected cartilage severely affects the system's delivery efficiency. Therefore, this study reports a silk fibroin microcapsule (SFM) structure based on layer-by-layer self-assembly, in which interleukin-4 (IL-4) is modified on silk by click chemistry and loaded with lysyl oxidase plasmid DNA (LOX pDNA). The silk microcapsules display good biocompatibility and the release rate of genes can be adjusted by controlling the number of self-assembled layers. Moreover, the functionalized SFMs mixed with methacrylated gelatin (GelMA) exhibit good injectability. The IL-4 on the outer layer of the SFM can regulate macrophages to polarize toward the M2 type, thereby promoting cartilage matrix repair and inhibiting inflammation. The LOX pDNA loaded inside can be effectively delivered into cells to promote extracellular matrix generation, significantly promoting cartilage regeneration. The results of this study provide a promising biomaterial for cartilage repair, and this novel silk-based microcapsule delivery system can also provide strategies for the treatment of other diseases.


Assuntos
Fibroínas , Fibroínas/química , Cápsulas , Interleucina-4 , Cartilagem , Seda/química , DNA , Regeneração , Alicerces Teciduais/química , Engenharia Tecidual
8.
Elife ; 122023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010266

RESUMO

Myocardial fibrosis is the characteristic pathology of diabetes-induced cardiomyopathy. Therefore, an in-depth study of cardiac heterogeneity and cell-to-cell interactions can help elucidate the pathogenesis of diabetic myocardial fibrosis and identify treatment targets for the treatment of this disease. In this study, we investigated intercellular communication drivers of myocardial fibrosis in mouse heart with high-fat-diet/streptozotocin-induced diabetes at single-cell resolution. Intercellular and protein-protein interaction networks of fibroblasts and macrophages, endothelial cells, as well as fibroblasts and epicardial cells revealed critical changes in ligand-receptor interactions such as Pdgf(s)-Pdgfra and Efemp1-Egfr, which promote the development of a profibrotic microenvironment during the progression of and confirmed that the specific inhibition of the Pdgfra axis could significantly improve diabetic myocardial fibrosis. We also identified phenotypically distinct Hrchi and Postnhi fibroblast subpopulations associated with pathological extracellular matrix remodeling, of which the Hrchi fibroblasts were found to be the most profibrogenic under diabetic conditions. Finally, we validated the role of the Itgb1 hub gene-mediated intercellular communication drivers of diabetic myocardial fibrosis in Hrchi fibroblasts, and confirmed the results through AAV9-mediated Itgb1 knockdown in the heart of diabetic mice. In summary, cardiac cell mapping provides novel insights into intercellular communication drivers involved in pathological extracellular matrix remodeling during diabetic myocardial fibrosis.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Camundongos , Animais , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Miocárdio/patologia , Diabetes Mellitus Experimental/complicações , Células Endoteliais/patologia , Análise da Expressão Gênica de Célula Única , Comunicação Celular , Fibrose , Fibroblastos/patologia
9.
Biochem Biophys Res Commun ; 640: 164-172, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512848

RESUMO

Osteoarthritis (OA) places a significant burden on society and finance, and there is presently no effective treatment beside late replacement surgery and symptomatic relief. The therapy of OA requires additional research. Gardenoside is a naturally compound extracted from Gardenia jasminoides Ellis, which has a variety of anti-inflammatory effects. However, few studies have been conducted to determine the role of gardenoside in OA. This study aimed to explore whether gardenoside has effect in OA treatment. Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of gardenoside at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 10 µM for further study. Via in vitro experiments, our study found that gardenoside lowers the gene expression of COX-2, iNOS, IL-6, and reduced the ROS production of chondrocytes induced by IL-1ß. Moreover, it effectively alleviates ECM degradation caused by IL-1ß and promotes the ECM synthesis in chondrocytes by upregulating collagen-II and the ACAN expression, downregulating the expression of MMP-3, MMP-13, and ADAMTS-5 expression. Further, our study showed that gardenoside inhibits NF-κB signaling pathway activated by IL-1ß in chondrocytes. We established an OA rat model by anterior cruciate ligament transection (ACLT). The animals were then periodically injected with gardenoside into the knee articular cavity. In vivo study suggested that gardenoside attenuates OA progression in rats. As a whole, in vitro and in vivo results highlight gardenoside is a promising OA treatment agent.


Assuntos
Matriz Extracelular , Iridoides , NF-kappa B , Osteoartrite , Animais , Ratos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Iridoides/farmacologia , Iridoides/uso terapêutico , NF-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Transdução de Sinais , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo
10.
Drug Des Devel Ther ; 16: 3793-3804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36345305

RESUMO

Purpose: Osteoarthritis (OA) places a significant burden on society and finance, and there is presently no effective treatment besides late replacement surgery and symptomatic relief. The therapy of OA requires additional research. Madecassic acid (MA) is the first native triterpenoid compound extracted from Centella asiatica, which has a variety of anti-inflammatory effects. However, the role of MA in OA therapy has not been reported. This study aimed to explore whether MA could suppress the inflammatory response, preserve and restore chondrocyte functions, and ameliorate the progression of OA in vitro and in vivo. Methods: Rat primary chondrocytes were treated with IL-1ß to simulate inflammatory environmental conditions and OA in vitro. We examined the effects of MA at concentrations ranging from 0 to 200 µM on the viability of rat chondrocytes and selected 10 µM for further study. Using qRT-PCR, immunofluorescent, immunocytochemistry, and Western blotting techniques, we identified the potential molecular mechanisms and signaling pathways that are responsible for these effects. We established an OA rat model by anterior cruciate ligament transection (ACLT). The animals were then periodically injected with MA into the knee articular cavity. Results: We found that MA could down-regulate the IL-1ß-induced up-regulation of COX-2, iNOS and IL-6 and restore the cytoskeletal integrity of chondrocytes treated with IL-1ß. Moreover, MA protects chondrocytes from IL-1ß-induced ECM degradation by upregulating ECM synthesis related protein expression, including collagen-II and ACAN, and further down-regulating ECM catabolic related protein expression, including MMP-3 and MMP-13. Furthermore, we found that NF-κB/IκBα and PI3K/AKT signaling pathways were involved in the regulatory effects of MA on the inflammation inhibition and promotion of ECM anabolism on IL-1ß-induced chondrocytes. Conclusion: These findings suggest that MA appears to be a potentially small molecular drug for rat OA.


Assuntos
Osteoartrite , Triterpenos , Ratos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Condrócitos , Interleucina-1beta/metabolismo , Triterpenos/uso terapêutico , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico
11.
Oxid Med Cell Longev ; 2022: 4824699, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193063

RESUMO

Connexin43 (Cx43)-mediated gap junctions are vital in maintaining corneal endothelium homeostasis. Tumor necrosis factor-alpha (TNF-α) is among the most important inflammatory factors which cause corneal endothelial dysfunction in various eye diseases. However, the effect of TNF-α on Cx43-mediated gap junctions of the corneal endothelium remains undefined. In the current research, we determined the effect of TNF-α on gap junction intercellular communication (GJIC) in rabbit corneal endothelium. To evaluate alterations of GJIC, if any, we treated ex vivo cultured rabbit corneal endothelium with different concentrations of TNF-α (2-20 ng/ml). The localization of Cx43 was analyzed by immunostaining, while RT-qPCR and western blot were used to profile the expression of Cx43 and zonula occludens-1 (ZO-1). The association between ZO-1 and Cx43 was evaluated using immunoprecipitation and double staining. GJIC activity was determined by the scrap loading and dye transfer assay (SLDT). Our data demonstrated that a high concentration of TNF-α (10 ng/ml and 20 ng/ml) disrupts the Cx43 mediated gap junction distribution in rabbit corneal endothelium and suppresses the expression of Cx43 protein. Furthermore, rabbit corneal endothelial GJIC was inhibited due to the decreased association between the ZO-1 and Cx43 proteins. Current results demonstrate that TNF-α inhibits corneal endothelial GJIC via decreasing the association between ZO-1 and Cx43, disrupting the distribution of Cx43, and downregulating the expression of Cx43 protein. This study offers a new theoretical foundation for diagnosing and treating corneal endothelial cell decompensation induced by elevated TNF-α in various eye diseases.


Assuntos
Conexina 43 , Fator de Necrose Tumoral alfa , Animais , Comunicação Celular/fisiologia , Células Cultivadas , Junções Comunicantes/metabolismo , Coelhos , Fator de Necrose Tumoral alfa/metabolismo
12.
Mol Neurobiol ; 59(9): 5734-5749, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35781632

RESUMO

Ischemic stroke is a clinical syndrome caused by the disruption of blood flow into cerebral tissues and is associated with high disability and mortality rates. Studies have established the pathological role of platelets in cerebral ischemia/reperfusion (I/R) injury, although the underlying mechanism of action remains largely unclear. In this study, we created an I/R mouse model via middle cerebral artery occlusion and reperfusion (MCAO/R) and analyzed the transcriptomic profiles of the ipsilateral and contralateral cortices using RNA-seq. We found that cerebral I/R injury induced platelet invasion and accumulation in the cerebral cortex by stimulating TNF-α secretion from activated astrocytes in the ischemic region, while TNF-α expression enhanced platelet reactivity through the RIP1/RIP3/AKT pathway. Furthermore, the inoculation of TNF-α-stimulated platelets aggravated I/R injury in mice, whereas the administration of anti-TNF-α antibodies at the onset of reperfusion alleviated ischemic damage. The RNA-seq results further showed that AP-1 transcriptionally activated TNF-α in the I/R-injured cortex by directly binding to the promoter region. These findings provide novel insights into the pathological role of platelets activated by reactive astrocyte-derived TNF-α in cerebral I/R injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Animais , Astrócitos/metabolismo , Isquemia Encefálica/patologia , Proteínas Ativadoras de GTPase , Infarto da Artéria Cerebral Média/patologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/farmacologia
13.
Oxid Med Cell Longev ; 2022: 4476448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873800

RESUMO

Background: Hypothermia (H), cardioplegia (CP), and both combined (HCP) are known to be protective against myocardial ischemia reperfusion (IR) injury. Mitochondria have molecular signaling mechanisms that are associated with both cell survival and cell death. In this study, we investigated the dynamic changes in proapoptotic and prosurvival signaling pathways mediating H, CP, or HCP-induced protection of mitochondrial function after acute myocardial IR injury. Methods: Rats were divided into five groups. Each group consists of 3 subgroups based on a specific reperfusion time (5, 20, or 60 min) after a 25-min global ischemia. The time control (TC) groups were not subjected to IR but were perfused with 37 °C Krebs-Ringer's (KR) buffer, containing 4.5 mM K+, in a specific perfusion protocol that corresponded with the duration of each IR protocol. The IR group (control) was perfused for 20 min with KR, followed by 25-min global ischemia, and then KR reperfusion for 5, 20, or 60 min. The treatment groups were exposed to 17 °C H, 37 °C CP (16 mM K+), or HCP (17 °C + CP) for 5 min before ischemia and for 2 min on reperfusion before switching to 37 °C KR perfusion for the remainder of each of the reperfusion times. Cardiac function and mitochondrial redox state (NADH/FAD) were monitored online in the ex vivo hearts before, during, and after ischemia. Mitochondria were isolated at the end of each specified reperfusion time, and changes in O2 consumption, membrane potential (ΔΨ m), and Ca2+ retention capacity (CRC) were assessed using complex I and complex II substrates. In another set of hearts, mitochondrial and cytosolic fractions were isolated after a specified reperfusion time to conduct western blot assays to determine hexokinase II (HKII) and Bax binding/translocation to mitochondria, cytosolic pAkt levels, and cytochrome c (Cyto-c) release into the cytosol. Results: H and HCP were more protective of mitochondrial integrity and, concomitantly, cardiac function than CP alone; H and HCP improved post-ischemic cardiac function by (1) maintaining mitochondrial bioenergetics, (2) maintaining HKII binding to mitochondria with an increase in pAkt levels, (3) increasing CRC, and (4) decreasing Cyto-c release during reperfusion. Bax translocation/binding to mitochondria was unaffected by any treatment, regardless of cardiac functional recovery. Conclusions: Hypothermia preserved mitochondrial function and cardiac function, in part, by maintaining mitochondrial bioenergetics, by retaining HKII binding to mitochondria via upstream pAkt, and by reducing Cyto-c release independently of Bax binding to mitochondria.


Assuntos
Hipotermia , Traumatismo por Reperfusão Miocárdica , Animais , Metabolismo Energético , Hexoquinase/metabolismo , Hipotermia/metabolismo , Isquemia/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Ratos , Reperfusão , Proteína X Associada a bcl-2/metabolismo
14.
Int J Gen Med ; 15: 4635-4647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535142

RESUMO

Background: Spindle and kinetochore-associated complex subunit 3 (SKA3) plays important roles in promoting the migration and the invasion of various human cancer cells. There are a few studies on SKA3 in lung adenocarcinoma (LUAD), but the in-depth analysis of the expression of SKA3 and the correlated possible immune mechanism of SKA3 in LUAD are not clear. Methods: In our study, the expression and survival data of SKA3 were analyzed in LUAD using TIMER, Oncomine, UALCAN, cBioPortal, LinkedOmics, Human Protein Atlas, and Kaplan-Meier plotter. Then, quantitative PCR was used to verify the expression differences of SKA3 between LUAD tissues of mice and the normal tissues. Results: We established that the expression of SKA3 in the LUAD group was remarkably higher than that in the normal group. Additionally, high SKA3 expression was linked to poorer survival in LUAD. Moreover, SKA3 expression had a remarkable negative correlation with the immune infiltration of B cells, macrophages, and CD4+ T cells. SKA3 was markedly negatively related to the immune type biomarkers of T cells and B cells in LUAD. The elevated expression of SKA3 with LUAD in enriched B cells, CD4+ T cells, CD8+ T cells, macrophages and Treg cells had worse prognosis, respectively. Functional network analysis showed that SKA3 regulated the mitotic cell cycle, mitosis, chromosome segregation and cell division via pathways. Conclusion: In summary, our study suggested that SKA3 was highly expressed in LUAD and SKA3 might function as a prognostic biomarker in LUAD. Besides, SKA3 may be a candidate oncogene, which correlates with poor prognosis and immune infiltration in lung adenocarcinoma.

15.
Phytomedicine ; 100: 154089, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35398736

RESUMO

BACKGROUND: Rabdosia japonica (Burm. f.) var. glaucocalyx (Maxim.) is a perennial herb, and is traditionally used as folk medicine for treating inflammatory diseases and cancer. Gaucocalyxin A (GLA) is an ent­kaurane diterpenoid that is isolated from the aerial parts of R. japonica (Burm. f.) var. glaucocalyx (Maxim.). In a recent study, we found that GLA protects against acute liver dysfunction induced by Escherichia coli, which is likely related to its anti-inflammatory effects. However, the mechanism by which GLA protects liver injury during sepsis is unknown. AIM: To evaluate the anti-inflammatory function of GLA and its regulatory effect on platelet function. METHOD: An in vivo model of sepsis was established by inoculating mice with E. coli. Live function and platelet activation were evaluated through standard assays. The levels of pro-inflammatory factors were measured through ELISA and qRT-PCR. RESULTS: GLA alleviated liver dysfunction in the mouse model of sepsis. GLA-treated mice displayed lower complement activation and liver dysfunction after E. coli infection. GLA alleviated the decrease in peripheral platelet counts by inhibiting their clearance by Kupffer cells in liver. Furthermore, GLA inhibited platelet activation through the RIP1/RIP3/AKT pathway and downregulated C3aR expression on the platelets, thereby inhibiting liver injury and dysfunction due to excessive complement activation. CONCLUSION: GLA can inhibit platelet activation by reducing surface expression of C3aR, which protect the liver from injury induced by excessive complement activation. GLA is a novel therapeutic agent for controlling sepsis-related liver dysfunction.


Assuntos
Diterpenos do Tipo Caurano , Sepse , Animais , Diterpenos do Tipo Caurano/farmacologia , Escherichia coli , Fígado , Camundongos , Ativação Plaquetária , Sepse/tratamento farmacológico , Transdução de Sinais
17.
Cell Death Dis ; 13(2): 147, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165268

RESUMO

Receptor-interacting protein kinase 1 (RIPK1) and 3 (RIPK3) are critical regulators of programmed necrosis or necroptosis. However, the role of the RIPK1/RIPK3 signaling pathway in myocardial fibrosis and related diabetic cardiomyopathy is still unclear. We hypothesized that RIPK1/RIPK3 activation mediated myocardial fibrosis by impairing the autophagic flux. To this end, we established in vitro and in vivo models of type 2 diabetes mellitus with high glucose fat (HGF) medium and diet respectively. HGF induced myocardial fibrosis, and impaired cardiac diastolic and systolic function by activating the RIPK1/RIPK3 pathway, which increased the expression of autophagic related proteins such as LC3-II, P62 and active-cathepsin D. Inhibition of RIPK1 or RIPK3 alleviated HGF-induced death and fibrosis of cardiac fibroblasts by restoring the impaired autophagic flux. The autophagy blocker neutralized the effects of the RIPK1 inhibitor necrostatin-1 (Nec-1) and RIPK3 inhibitor GSK872 (GSK). RIPK1/RIPK3 inhibition respectively decreased the levels of RIPK3/p-RIPK3 and RIPK1/p-RIPK1. P62 forms a complex with RIPK1-RIPK3 and promotes the binding of RIPK1 and RIPK3, silencing of RIPK1 decreased the association of RIPK1 with P62 and the binding of P62 to LC3. Furthermore, inhibition of both kinases in combination with a low dose of Nec-1 and GSK in the HGF-treated fibroblasts significantly decreased cell death and fibrosis, and restored the autophagic flux. In the diabetic rat model, Nec-1 (1.65 mg/kg) treatment for 4 months markedly alleviated myocardial fibrosis, downregulated autophagic related proteins, and improved cardiac systolic and diastolic function. In conclusion, HGF induces myocardial fibrosis and cardiac dysfunction by activating the RIPK1-RIPK3 pathway and by impairing the autophagic flux, which is obviated by the pharmacological and genetic inhibition of RIPK1/RIPK3.


Assuntos
Autofagia , Diabetes Mellitus Tipo 2 , Miocárdio , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Diabetes Mellitus Tipo 2/complicações , Fibroblastos/metabolismo , Fibrose , Miocárdio/patologia , Necrose , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
19.
Front Cell Infect Microbiol ; 11: 720357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722330

RESUMO

SARS-coronavirus 2 (SARS-CoV-2), pathogen of coronavirus disease 2019 (COVID-19), is constantly evolving to adapt to the host and evade antiviral immunity. The newly emerging variants N501Y.V1 (B.1.1.7) and N501Y.V2 (B.1.351), first reported in the United Kingdom and South Africa respectively, raised concerns due to the unusually rapid global spread. The mutations in spike (S) protein may contribute to the rapid spread of these variants. Here, with a vesicular stomatitis virus (VSV)-based pseudotype system, we demonstrated that the pseudovirus bearing N501Y.V2 S protein has higher infection efficiency than pseudovirus with wildtype (WT) and D614G S protein. Moreover, pseudovirus with N501Y.V1 or N501Y.V2 S protein has better thermal stability than WT and D614G, suggesting these mutations of variants may increase the stability of SARS-CoV-2 S protein and virion. However, the pseudovirus bearing N501Y.V1 or N501Y.V2 S protein has similar sensitivity to inhibitors of protease and endocytosis with WT and D614G. These findings could be of value in preventing the spread of virus and developing drugs for emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Mutação , Glicoproteína da Espícula de Coronavírus/genética
20.
Front Mol Biosci ; 8: 698698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692767

RESUMO

Diabetic cardiomyopathy (DCM) is the leading cause of death in diabetic patients. Folic acid has a protective effect on diabetes-induced cardiomyocyte damage. The aim of this study was to explore the effects of folic acid on cardiomyocytes cultured under high glucose and fat (HGF) conditions and type 2 diabetes mellitus (T2DM) mice, and elucidate the underlying mechanisms. Bioinformatics analysis was used to identify the potential drugs through the Drug-Gene Interaction database. H9C2 cardiomyocytes were cultured with 30 mM glucose and 500 nM palmitic acid in the presence or absence of folic acid or YAP1 inhibitor (verteporfin) or YAP1 siRNA. The cell viability and lactate dehydrogenase (LDH) release were measured using specific assay kits. Pyroptosis was detected by flow cytometry. The concentrations of IL-1ß and IL-18 in the supernatants were measured by ELISA. The NLRP3, ASC and caspase-1 mRNA levels were detected by qRT-PCR and that the proteins expression of NLRP3, ASC, cleaved caspase-1 (p10), caspase-1, YAP1, p-YAP1, LATS1 and P-LATS1 were detected by Western blotting. C57BL/6 mice were fed with high fat diet (HFD) combined with streptozotocin (STZ) intraperitoneally to establish a T2DM model, folic acid or PBS treatment for 8 weeks by oral gavage, blood glucose and body weight were measured every 4 weeks, mouse heart tissue was used to detect pyroptosis and hippo signaling pathway related protein expression. We identified 427 differentially expressed genes in the cardiac tissues of high fat diet + streptozotocin mice, among the 30 most significantly DEGs, folic acid was predicted to be the most likely therapeutic drug. Folic acid alleviated HGF-induced cell damage in vitro and in vivo by decreasing activation of the Hippo pathway, as indicated by lower LDH release and increased cell viability, and decreased expression of NLRP3, ASC, cleaved caspase-1, IL-1ß, IL-18, p-YAP and p-LATS. Verteporfin or YAP1 siRNA neutralized the protective effect of folic acid by reversing YAP1-induced pyroptosis. Folic acid reduced NLRP3 inflammasome-mediated pyroptosis by down-regulating the Hippo signaling pathway, thereby effectively reducing T2DM-induced damage in H9C2 cells and animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...