Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 337: 139351, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37379986

RESUMO

The adsorption of formaldehyde on the original carbon material is limited. Determining the synergistic adsorption of formaldehyde by different defects on the carbon material is necessary for comprehensively understanding the mechanism of formaldehyde adsorption on the surface of the carbon material. The synergistic effect of intrinsic defects and oxygen-containing functional groups on formaldehyde adsorption on the surface of carbon materials was simulated and verified by experiments. Based on the density functional theory, the adsorption of formaldehyde on different carbon materials was simulated by quantum chemistry. The synergistic adsorption mechanism was studied by energy decomposition analysis, IGMH, QTAIM, and charge transfer, and the binding energy of hydrogen bonds was estimated. The results showed that the energy for the adsorption of formaldehyde adsorbed by the carboxyl group on the vacancy defect was the highest, at -11.86 kcal/mol, the hydrogen bond binding energy was -9.05 kcal/mol, and a larger charge transfer was recorded. The mechanism of synergy was studied comprehensively, and the simulation results were verified at multiple scales. This study provides valuable insights into the effect of carboxyl groups on the adsorption of formaldehyde by activated carbon.


Assuntos
Formaldeído , Oxigênio , Adsorção , Oxigênio/química , Formaldeído/química , Carvão Vegetal/química
2.
Sci Total Environ ; 863: 160772, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36513224

RESUMO

It is important to study the effect of oxygen-containing functional groups on the competitive adsorption mechanism of benzene and water on the surface of carbon materials, and to directional modification of activated carbon to improve its selective adsorption of benzene in air. In this study, the adsorption characteristics of benzene and water on original and linked ester, carboxyl, hydroxyl, carbon materials linked by ether groups were calculated by quantum chemical simulation based on density functional theory. The types and proportions of weak interactions in the adsorption process were calculated by energy decomposition analysis, and the adsorption mechanism of carbon materials for water and benzene was described. The influence and contribution of oxygen-containing functional groups on the adsorption of benzene and water were further analyzed by van der Waals potential and electrostatic potential, respectively, so as to determine the difference in the adsorption effect of different types of oxygen-containing functional groups on the two molecules. It was found that the carboxyl group has a great influence on the hydrophilicity of carbon materials, and the electrostatic potential distribution before and after linking the carboxyl group changed significantly. Therefore, they can attract each other with water through hydrogen bonds and occupy the surface adsorption sites of carbon materials, thereby inhibiting the adsorption of benzene on carbon materials. On the contrary, due to its hydrophobic properties, the ether group will free up adsorption space for the adsorption of benzene on the surface of the carbon material, which is beneficial to the adsorption of benzene. The adsorption experiments were carried out, and the results were consistent with the simulation. This study provides an idea for preparing efficient carbonaceous adsorbent of benzene and reducing benzene pollution in industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...