Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 27(1): 163, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045437

RESUMO

Exosomes are membranous vesicles containing RNA and proteins that are specifically secreted in vivo. Exosomes have many functions, such as material transport and signal transduction between cells. Many studies have proven that exosomes can not only be used as biomarkers for disease diagnosis but also as carriers to transmit information between cells. Exosomes participate in a variety of physiological and pathological processes, including the immune response, antigen presentation, cell migration, cell differentiation, and tumour development. Differences in exosome functions depend on cell type. In recent years, exosome origin, cargo composition, and precise regulatory mechanisms have been the focus of research. Although exosomes have been extensively reported in digestive tumours, few articles have reviewed their roles in inflammatory diseases of the digestive system, especially inflammatory-related diseases (such as reflux oesophagitis, gastritis, inflammatory bowel disease, hepatitis, and pancreatitis). This paper briefly summarizes the roles of exosomes in inflammatory diseases of the digestive system to provide a basis for research on the mechanism of inflammatory diseases of the digestive system targeted by exosomes.


Assuntos
Exossomos , Hepatite , Biomarcadores/metabolismo , Sistema Digestório/metabolismo , Exossomos/metabolismo , Humanos
2.
Int J Med Sci ; 19(8): 1241-1253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928724

RESUMO

Retroperitoneal liposarcoma (RLPS) is one of the most common subtypes of retroperitoneal soft tissue sarcomas. It is characterized by poor sensitivity to radiotherapy and chemotherapy and a low success rate of complete surgical resection. However, there are few reliable preclinical RLPS models for target discovery and therapy research. In this study, we aimed to establish RLPS patient-derived xenograft (PDX) models that are useful for biological research and preclinical drug trials. A total of 56 freshly resected RLPS tissues were subcutaneously transplanted into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice, with subsequent xenotransplantation into second-generation mice. The tumor engraftment rate of first generation PDXs was 44.64%, and higher success rates were obtained from implantations of dedifferentiated, myxous, pleomorphic, high-grade liposarcomas and those with retroperitoneal organ infiltration. The first- and second- generation PDX models preserved the histopathological morphology, gene mutation profiles and MDM2 amplification of the primary tissues. PDX models can also provide the benefit of retaining original tumor biology and microenvironment characteristics, such as abnormal adipose differentiation, elevated Ki67 levels, high microvessel density, cancer-associated fibroblast presence, and tumor-associated macrophage infiltration. Overall survival (OS) and disease-free survival (DFS) of patients with successful first-generation PDX engraftment were significantly poorer than those with failed engraftment. Treatment with MDM2 inhibitor RG7112 significantly suppressed tumor growth of DDLPS PDX in mice. In conclusion, we successfully established RLPS PDX models that were histologically, genetically, and molecularly consistent with the original tissues. These models might provide opportunities for advancing RLPS tumor biology research, facilitating the development of novel drugs, particularly those targeting MDM2 amplification, adipose differentiation process, angiogenesis, cancer-associated fibroblasts, and so on.


Assuntos
Lipossarcoma , Animais , Modelos Animais de Doenças , Xenoenxertos , Humanos , Lipossarcoma/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Retroperitoneais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Med Sci ; 17(18): 3073-3081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33173428

RESUMO

Patient-derived xenograft (PDX) models are effective preclinical cancer models that reproduce the tumor microenvironment of the human body. The methods have been widely used for drug screening, biomarker development, co-clinical trials, and personalized medicine. However, the low success rate and the long tumorigenesis period have largely limited their usage. In the present studies, we compared the PDX establishment between hepatocellular cancer (HCC) and metastatic liver cancer (MLC), and identified the key factors affecting the transplantation rate of PDXs. Surgically resected tumor specimens obtained from patients were subcutaneously inoculated into immunodeficient mice to construct PDX models. The overall transplantation rate was 38.5% (20/52), with the HCC group (28.1%, 9/32) being lower than MLC group (56.2%, 9/16). In addition, HCC group took significantly longer latency period than MLC group to construct PDX models. Hematoxylin and eosin staining results showed that the histopathology of all generations in PDX models was similar to the original tumor in all three types of cancer. The transplantation rate of PDX models in HCC patients was significantly associated with blood type (P=0.001), TNM stage (P=0.023), lymph node metastasis (P=0.042) and peripheral blood CA19-9 level (P=0.049), while the transplantation rate of PDX models in MLC patients was significantly associated with tumor size (P=0.034). This study demonstrates that PDX models can effectively reproduce the histological patterns of human tumors. The transplantation rate depends on the type of original tumor. Furthermore, it shows that the invasiveness of the original liver cancer affects the possibility of its growth in immunodeficient mice.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/secundário , Fígado/patologia , Microambiente Tumoral , Animais , Carcinoma Hepatocelular/cirurgia , Neoplasias Colorretais/cirurgia , Feminino , Hepatectomia , Humanos , Fígado/cirurgia , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos , Pessoa de Meia-Idade , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Toxicol Appl Pharmacol ; 401: 115118, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32619553

RESUMO

Glucocorticoid receptor (GR) modulates extensive biological and pathological processes including tumor progression through diverse mechanisms. The regulatory effects of dexamethasone (DEX), a synthetic glucocorticoid, as well as its interaction with GR have been recognized beyond hematologic cancers. In the present study, we investigated the anti-cancer efficacy of DEX and the correlation with GR in pancreatic cancer, a most aggressive malignancy threatening human health. The differential levels of GR expression were examined in two human pancreatic cancer cell lines, PANC-1 and SW1990, as well as in xenografts and patient tumor tissues. DEX significantly inhibited colony formation, migration, and tumor growth of PANC-1 cells expressing abundant GR. The underlying mechanisms involved suppression of nuclear factor κB (NF-κB) phosphorylation and down-regulation of epithelial-to-mesenchymal transition (EMT), interleukin 6 (IL-6) and vascular endothelial growth factor (VEGF). The anti-cancer effects of DEX were partially reversed by GR silencing or combinational administration of GR antagonist, RU486. The dose-dependent efficacy of DEX in tumor growth inhibition was also demonstrated in a GR-positive patient-derived xenograft model along with safety in mice. DEX was less potent, however, in SW1990 cells with poor GR expression. Our findings suggest that DEX effectively inhibits pancreatic tumor growth partially through GR activation. The potential correlation between GR expression and anti-cancer efficacy of DEX may have some clinical implications.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Dexametasona/uso terapêutico , Neoplasias Pancreáticas/metabolismo , Receptores de Glucocorticoides/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Células A549 , Animais , Antineoplásicos Hormonais/farmacologia , Dexametasona/farmacologia , Relação Dose-Resposta a Droga , Feminino , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Carga Tumoral/fisiologia
6.
J Pharm Sci ; 109(2): 1169-1177, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31655033

RESUMO

Dexamethasone (DEX), a synthetic glucocorticoid, exhibited anti-cancer efficacy in pancreatic xenografts derived from patient tumor tissue or cancer cell lines. The aim of this study was to establish pharmacokinetic/pharmacodynamic (PK/PD) models to quantitatively characterize the inhibitory effect of DEX on tumor growth as well as its discrepancy among 3 xenograft models. Data of tumor growth profiles were collected from a patient-derived xenograft (PDX) model in NOD/SCID mice and 2 cell line-derived (PANC-1 and SW1990) xenograft models in BALB/c nude mice. Empirical PK/PD models were developed to establish mathematical relationships between plasma concentration of DEX and tumor growth dynamics after integrating PK parameters extracted from literature. Drug effect in each model was well described by a linear inhibitory function with a potency factor of 4.67, 3.14, and 2.35 L/mg for PDX, PANC-1, and SW1990 xenograft, respectively. Human efficacious doses of DEX were preliminarily predicted through model-based simulation, and 60% tumor growth inhibition at clinical exposure corresponded to a daily dose range of 26-52 mg intravenously. This modeling work quantified the preclinical anti-cancer effect of DEX and demonstrated the feasibility of its medication in pancreatic cancer, which would be conductive to future translational research.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Dexametasona , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Toxicol Appl Pharmacol ; 384: 114789, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669811

RESUMO

Previous studies showed that dopamine (DA) significantly reduces the frequency of cancer stem-like cells (CSC) and enhances the efficacy of sunitinib (SUN) in the treatment of breast cancer and non-small cell lung cancer (NSCLC). To overcome the shortcomings of DA in clinical practice, the purpose of this study was to investigate the efficacy as well as the underlying mechanism of an orally available, N-arylpiperazine-containing compound C2, in the treatment of pancreatic cancer when used alone or in combination with SUN. Our results showed that C2 and SUN exerted synergistic effects on inhibiting the growth of SW1990 and PANC-1 pancreatic cancer cells. C2 significantly inhibited colony formation and migration of both cells. SW1990 xenograft and patient-derived xenograft (PDX) models were utilized for pharmacodynamic investigation in vivo. C2 alone showed little inhibition effect on tumor growth but increased the anti-tumor efficacy of SUN in both xenografts. Moreover, C2 down-regulated CSC markers (CD133 and ALDH) of both cancer cells and up-regulated the expression of dopamine receptor D1 (D1DR) in tumor. Besides, the SW1990 tumor growth was dose-dependently inhibited when the cells were pretreated with C2 before implantation. C2 increased intratumoral cAMP level, and the combination with D1DR specific antagonist SCH23390 reversed the above-mentioned effects of C2 both in vitro and in vivo, indicating the activation of D1DR may be involved in the underlying mechanism of C2 action. In summary, C2 could reduce the CSC frequency and enhance the anti-cancer effect of SUN in the treatment of pancreatic cancer, demonstrating its potential in cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Piperazinas/farmacologia , Receptores de Dopamina D1/metabolismo , Sunitinibe/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Pâncreas/patologia , Pancreatectomia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Piperazinas/química , Piperazinas/uso terapêutico , Receptores de Dopamina D1/química , Sunitinibe/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...