Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Optom Vis Sci ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935034

RESUMO

SIGNIFICANCE: Our retinal image-based deep learning (DL) cardiac biological age (BioAge) model could facilitate fast, accurate, noninvasive screening for cardiovascular disease (CVD) in novel community settings and thus improve outcome with those with limited access to health care services. PURPOSE: This study aimed to determine whether the results issued by our DL cardiac BioAge model are consistent with the known trends of CVD risk and the biomarker leukocyte telomere length (LTL), in a cohort of individuals from the UK Biobank. METHODS: A cross-sectional cohort study was conducted using those individuals in the UK Biobank who had LTL data. These individuals were divided by sex, ranked by LTL, and then grouped into deciles. The retinal images were then presented to the DL model, and individual's cardiac BioAge was determined. Individuals within each LTL decile were then ranked by cardiac BioAge, and the mean of the CVD risk biomarkers in the top and bottom quartiles was compared. The relationship between an individual's cardiac BioAge, the CVD biomarkers, and LTL was determined using traditional correlation statistics. RESULTS: The DL cardiac BioAge model was able to accurately stratify individuals by the traditional CVD risk biomarkers, and for both males and females, those issued with a cardiac BioAge in the top quartile of their chronological peer group had a significantly higher mean systolic blood pressure, hemoglobin A1c, and 10-year Pooled Cohort Equation CVD risk scores compared with those individuals in the bottom quartile (p<0.001). Cardiac BioAge was associated with LTL shortening for both males and females (males: -0.22, r2 = 0.04; females: -0.18, r2 = 0.03). CONCLUSIONS: In this cross-sectional cohort study, increasing CVD risk whether assessed by traditional biomarkers, CVD risk scoring, or our DL cardiac BioAge, CVD risk model, was inversely related to LTL. At a population level, our data support the growing body of evidence that suggests LTL shortening is a surrogate marker for increasing CVD risk and that this risk can be captured by our novel DL cardiac BioAge model.

2.
Cardiovasc Digit Health J ; 5(2): 59-69, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38765618

RESUMO

Background: Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of death globally, and early detection of high-risk individuals is essential for initiating timely interventions. The authors aimed to develop and validate a deep learning (DL) model to predict an individual's elevated 10-year ASCVD risk score based on retinal images and limited demographic data. Methods: The study used 89,894 retinal fundus images from 44,176 UK Biobank participants (96% non-Hispanic White, 5% diabetic) to train and test the DL model. The DL model was developed using retinal images plus age, race/ethnicity, and sex at birth to predict an individual's 10-year ASCVD risk score using the pooled cohort equation (PCE) as the ground truth. This model was then tested on the US EyePACS 10K dataset (5.8% non-Hispanic White, 99.9% diabetic), composed of 18,900 images from 8969 diabetic individuals. Elevated ASCVD risk was defined as a PCE score of ≥7.5%. Results: In the UK Biobank internal validation dataset, the DL model achieved an area under the receiver operating characteristic curve of 0.89, sensitivity 84%, and specificity 90%, for detecting individuals with elevated ASCVD risk scores. In the EyePACS 10K and with the addition of a regression-derived diabetes modifier, it achieved sensitivity 94%, specificity 72%, mean error -0.2%, and mean absolute error 3.1%. Conclusion: This study demonstrates that DL models using retinal images can provide an additional approach to estimating ASCVD risk, as well as the value of applying DL models to different external datasets and opportunities about ASCVD risk assessment in patients living with diabetes.

3.
PLoS One ; 18(11): e0295073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38032977

RESUMO

Deep learning (DL) models have shown promise in detecting chronic kidney disease (CKD) from fundus photographs. However, previous studies have utilized a serum creatinine-only estimated glomerular rate (eGFR) equation to measure kidney function despite the development of more up-to-date methods. In this study, we developed two sets of DL models using fundus images from the UK Biobank to ascertain the effects of using a creatinine and cystatin-C eGFR equation over the baseline creatinine-only eGFR equation on fundus image-based DL CKD predictors. Our results show that a creatinine and cystatin-C eGFR significantly improved classification performance over the baseline creatinine-only eGFR when the models were evaluated conventionally. However, these differences were no longer significant when the models were assessed on clinical labels based on ICD10. Furthermore, we also observed variations in model performance and systemic condition incidence between our study and the ones conducted previously. We hypothesize that limitations in existing eGFR equations and the paucity of retinal features uniquely indicative of CKD may contribute to these inconsistencies. These findings emphasize the need for developing more transparent models to facilitate a better understanding of the mechanisms underpinning the ability of DL models to detect CKD from fundus images.


Assuntos
Aprendizado Profundo , Insuficiência Renal Crônica , Humanos , Taxa de Filtração Glomerular , Creatinina , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/epidemiologia , Técnicas de Diagnóstico Oftalmológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...