Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657688

RESUMO

Biofouling is inevitable in the membrane process, particularly in membrane bioreactors (MBR) combined with activated sludge processes. Regulating microbial signaling systems with diffusible signal factors such as cis-2-Decenoic acid (CDA) can control biofilm formation without microbial death or growth inhibition. This study assessed the effectiveness of CDA in controlling biofouling in membrane bioreactors (MBRs), essential for wastewater treatment. By modulating microbial signaling, CDA mitigated biofilm formation without hindering microbial growth. Analysis using Confocal Laser Scanning Microscopy (CLSM) revealed structural alterations in the biofilm, reducing biomass and thickness upon CDA application. Moreover, examination of extracellular polymeric substances (EPS) highlighted a decrease in total EPS, particularly effective polysaccharides. In addition, the possibility of shifting from high molecular weight EPS to low molecular weight EPS was revealed through the change in dispersion activity. The 56% extension of MBR operational lifespan resulting from the reduction in EPS is anticipated to offer potential cost savings and improved performance. Despite these results, further investigation is crucial to validate any potential environmental risks associated with CDA and to comprehend its long-term effects at various conditions.


Assuntos
Biofilmes , Incrustação Biológica , Reatores Biológicos , Ácidos Graxos Monoinsaturados , Membranas Artificiais , Águas Residuárias , Incrustação Biológica/prevenção & controle , Biofilmes/efeitos dos fármacos , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Matriz Extracelular de Substâncias Poliméricas , Esgotos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...