Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 264-277, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38173877

RESUMO

Precise localization and dissection of gene promoters are key to understanding transcriptional gene regulation and to successful bioengineering applications. The core RNA polymerase II initiation machinery is highly conserved among eukaryotes, leading to a general expectation of equivalent underlying mechanisms. Still, less is known about promoters in the plant kingdom. In this study, we employed cap analysis of gene expression (CAGE) at three embryonic developmental stages in barley to accurately map, annotate, and quantify transcription initiation events. Unsupervised discovery of de novo sequence clusters grouped promoters based on characteristic initiator and position-specific core-promoter motifs. This grouping was complemented by the annotation of transcription factor binding site (TFBS) motifs. Integration with genome-wide epigenomic data sets and gene ontology (GO) enrichment analysis further delineated the chromatin environments and functional roles of genes associated with distinct promoter categories. The TATA-box presence governs all features explored, supporting the general model of two separate genomic regulatory environments. We describe the extent and implications of alternative transcription initiation events, including those that are specific to developmental stages, which can affect the protein sequence or the presence of regions that regulate translation. The generated promoterome dataset provides a valuable genomic resource for enhancing the functional annotation of the barley genome. It also offers insights into the transcriptional regulation of individual genes and presents opportunities for the informed manipulation of promoter architecture, with the aim of enhancing traits of agronomic importance.

2.
Jpn J Infect Dis ; 75(3): 277-280, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34719530

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, in December 2019. Despite the recent introduction of vaccines against SARS-CoV-2, more effective vaccines and antiviral drugs must be developed. Here, we isolated five SARS-CoV-2 strains from four patients with coronavirus disease (COVID-19) and an asymptomatic individual using pharyngeal swabs, nasopharyngeal swabs, and sputum samples. Cytopathic effects in inoculated Vero cells were observed between days 3 and 7. SARS-CoV-2 infection was confirmed by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and next-generation sequencing. Phylogenetic analyses of the whole genome sequences showed that the virus isolates from the clinical samples belonged to the Wuhan and European lineages. These findings and the isolated viruses may contribute to the development of diagnostic tools, vaccines, and antiviral drugs for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais/uso terapêutico , Vacinas contra COVID-19 , Chlorocebus aethiops , Humanos , Filogenia , SARS-CoV-2/genética , Células Vero
3.
Proc Natl Acad Sci U S A ; 116(31): 15635-15644, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31300537

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Several genome sequencing studies have provided comprehensive CRC genomic datasets. Likewise, in our previous study, we performed genome-wide Sleeping Beauty transposon-based mutagenesis screening in mice and provided comprehensive datasets of candidate CRC driver genes. However, functional validation for most candidate CRC driver genes, which were commonly identified from both human and mice, has not been performed. Here, we describe a platform for functionally validating CRC driver genes that utilizes CRISPR-Cas9 in mouse intestinal tumor organoids and human CRC-derived organoids in xenograft mouse models. We used genetically defined benign tumor-derived organoids carrying 2 frequent gene mutations (Apc and Kras mutations), which act in the early stage of CRC development, so that we could clearly evaluate the tumorigenic ability of the mutation in a single gene. These studies showed that Acvr1b, Acvr2a, and Arid2 could function as tumor suppressor genes (TSGs) in CRC and uncovered a role for Trp53 in tumor metastasis. We also showed that co-occurrent mutations in receptors for activin and transforming growth factor-ß (TGF-ß) synergistically promote tumorigenesis, and shed light on the role of activin receptors in CRC. This experimental system can also be applied to mouse intestinal organoids carrying other sensitizing mutations as well as organoids derived from other organs, which could further contribute to identification of novel cancer driver genes and new drug targets.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Colorretais , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Neoplasias , Organoides , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Organoides/metabolismo , Organoides/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...