Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 54(36): 10483-7, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26212227

RESUMO

We report here a strategy for influencing the phase and lattice of the inverse mesophases of a single branched-linear block copolymer (BCP) in solution which does not require changing the structure of the BCP. The phase of the self-assembled structures of the block copolymer can be controlled ranging from bilayer structures of positive curvature (polymersomes) to inverse mesophases (triply periodic minimal surfaces and inverse hexagonal structures) by adjusting the solvent used for self-assembly. By using solvent mixtures to dissolve the block copolymer we were able to systematically change the affinity of the solvent toward the polystyrene block, which resulted in the formation of inverse mesophases with the desired lattice by self-assembly of a single branched-linear block copolymer. Our method was also applied to a new solution self-assembly method for a branched-linear block copolymer on a stationary substrate under humidity, which resulted in the formation of large mesoporous films. Our results constitute the first controlled transition of the inverse mesophases of block copolymers by adjusting the solvent composition.

2.
ACS Nano ; 9(3): 3084-96, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25731603

RESUMO

Solution self-assembly of amphiphilic block copolymers into inverse bicontinuous cubic mesophases is an emerging strategy for directly creating highly ordered triply periodic porous polymer nanostructures with large pore networks and desired surface functionalities. Although there have been recent reports on the formation of highly ordered triply periodic minimal surfaces of self-assembled block copolymer bilayers, the structural requirements for block copolymers in order to facilitate the preferential formation of such inverse mesophases in solution have not been fully investigated. In this study, we synthesized a series of model block copolymers, namely, branched poly(ethylene glycol)-block-polystyrene (bPEG-PS), to investigate the effect of the architecture of the block copolymers on their solution self-assembly into inverse mesophases consisting of the block copolymer bilayer. On the basis of the results, we suggest that the branched architecture of the hydrophilic block is a crucial structural requirement for the preferential self-assembly of the resulting block copolymers into inverse bicontinuous cubic phases. The internal crystalline lattice of the inverse bicontinuous cubic structure can be controlled via coassembly of branched and linear block copolymers. The results presented here provide design criteria for amphiphilic block copolymers to allow the formation of inverse bicontinuous cubic mesophases in solution. This may contribute to the direct synthesis of well-defined porous polymers with desired crystalline order in the porous networks and surface functionalities.

3.
Nat Commun ; 6: 6392, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25740100

RESUMO

Solution self-assembly of block copolymers into inverse bicontinuous cubic mesophases is a promising new approach for creating porous polymer films and monoliths with highly organized bicontinuous mesoporous networks. Here we report the direct self-assembly of block copolymers with branched hydrophilic blocks into large monoliths consisting of the inverse bicontinuous cubic structures of the block copolymer bilayer. We suggest a facile and scalable method of solution self-assembly by diffusion of water to the block copolymer solution, which results in the unperturbed formation of mesoporous monoliths with large-pore (>25 nm diameter) networks weaved in crystalline lattices. The surface functional groups of the internal large-pore networks are freely accessible for large guest molecules such as protein complexes of which the molecular weight exceeded 100 kDa. The internal double-diamond (Pn3m) networks of large pores within the mesoporous monoliths could be replicated to self-supporting three-dimensional skeletal structures of crystalline titania and mesoporous silica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...