Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 54(8): 6329-6341, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27722924

RESUMO

Atherosclerotic plaque vulnerability is the major cause for acute stroke and could be regulated by macrophage polarization. MicroRNA-181b (miR-181b) was involved in macrophage differential. Here, we explore whether miR-181b could regulate atherosclerotic plaque vulnerability by modulating macrophage polarization and the underline mechanisms. In acute stroke patients with atherosclerotic plaque, we found that the serum level of miR-181b was decreased. Eight-week apolipoprotein E knockout (ApoE-/-) mice were randomly divided into three groups (N = 10): mice fed with normal saline (Ctrl), mice fed with high-fat diet, and tail vein injection with miRNA agomir negative control (AG-NC)/miR-181b agomir (181b-AG, a synthetic miR-181b agonist). We found that the serum level of miR-181b in AG-NC group was lower than that in Ctrl group. Moreover, 181b-AG could upregulate miR-181b expression, reduce artery burden and attenuate atherosclerotic plaque vulnerability by modulating macrophage polarization. In RAW264.7 cells treated with oxidized low-density lipoprotein (ox-LDL), we found miR-181b could reverse the function of ox-LDL on M1/M2 markers at both mRNA and protein levels. Furthermore, by employing luciferase reporter assay, we found that Notch1 was a direct target of miR-181b and could be regulated by miR-181b in vivo and in vitro. Finally, inhibition of Notch1 could abolish the function of downregulating miR-181b on increasing M2 phenotype macrophages. Our study demonstrates that administration of miR-181b could reduce atherosclerotic plaque vulnerability partially through modulating macrophage phenotype by directly targeting Notch1.


Assuntos
Macrófagos/efeitos dos fármacos , MicroRNAs/agonistas , Placa Aterosclerótica/metabolismo , Receptor Notch1/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Polaridade Celular/efeitos dos fármacos , Dieta Hiperlipídica , Lipoproteínas LDL/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...