Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(11): e32159, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912487

RESUMO

Background: Bazi Bushen capsule (BZBS) is a Chinese herbal compound that is clinically used to treat fatigue and forgetfulness. However, it is still unclear whether and how BZBS affects heart function decline in menopausal women. This study aimed to examine the effect of BZBS on cardiac function in a high-fat diet-fed ovariectomy (HFD-fed OVX) mouse model and elucidate the underlying mechanism of this effect. Methods: The experimental animals were divided into five groups: sham group, HFD-fed OVX group, and BZBS (0.7, 1.4, 2.8 g/kg) intervention groups. Senescence ß-galactosidase staining and echocardiography were used to evaluate cardiac function. SwissTargetPrediction, KEGG and GO enrichment analyses were used to screen the underlying mechanism of BZBS. The morphological and functional changes in cardiac mitochondria and the underlying molecular mechanism were assessed by transmission electron microscopy, western blotting and biochemical assays. STRING database was used to analysis protein-protein interaction (PPI) network. Molecular docking studies were employed to predict the interactions of specific BZBS compounds with their protein targets. Results: BZBS treatment ameliorated cardiac senescence and cardiac systole injury in HFD-fed OVX mice. GO and KEGG analyses revealed that the 530 targets of the 14 main components of BZBS were enriched mainly in the oxidative stress-associated pathway, which was confirmed by the finding that BZBS treatment prevented abnormal morphological changes and oxidative stress damage to cardiac mitochondria in HFD-fed OVX mice. Furthermore, the STRING database showed that the targets of BZBS were broadly related to the Sirtuins family. And BZBS upregulated the SIRT3 and elevated the activity of SOD2 in the hearts of HFD-fed OVX mice, which was also verified in vitro. Additionally, we revealed that imperatorin and osthole from the BZBS upregulated the expression of SIRT3 by directly docking with the transcription factors HDAC1, HDAC2, and BRD4, which regulate the expression of SIRT3. Conclusion: This research shows that the antioxidative effect and cardioprotective role of BZBS on HFD-fed OVX mice involves an increase in the activity of the SIRT3/SOD2 pathway, and the imperatorin and osthole of BZBS may play central roles in this process.

2.
J Control Release ; 365: 583-601, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048963

RESUMO

The complex etiologies and mechanisms of Alzheimer's disease (AD) underscore the importance for devising multitarget drugs to achieve effective therapy. MicroRNAs (miRNAs) are capable of concurrently regulating the expression of multiple proteins by selectively targeting disease- associated genes in a sequence-specific fashion. Nonetheless, as RNA-based drugs, their stability in the circulation and capacity of traversing the blood-brain barrier (BBB) is largely compromised, thereby limiting their potential clinical applications. In this study, we formulated the nanoliposomes encapsulating polyethyleneimine (PEI)/miR-195 complex (DPMT@PEI/miR-195) that was engineered through dual modifications to contain P-aminophenyl-alpha-d-mannopyranoside (MAN) and cationic cell-penetrating peptide (TAT). DPMT@PEI/miR-195 exhibited the enhanced BBB- and cell membrane penetrating capability. As expected, we observed that DPMT@PEI/miR-195 administered through intravenous tail injection of produced greater effectiveness than donepezil and the same range of effect as aducanumab in alleviating the cognitive decline in 7-month-old APP/PS1 mice. Moreover, the combination treatment with DPMT@PEI/miR-195 and donepezil effectively ameliorated the deterioration of cognition in 16-month-old APP/PS1 mice, with enhanced effects than either DPMT@PEI/miR-195 or donepezil alone. Furthermore, DPMT@PEI/miR-195 effectively attenuated the positive signals of Aß, AT8, and CD68 in APP/PS1 mice without notable side effects. Our findings indicate DPMT@PEI/miR-195 as a promising potentially new agent or approach for the prophylaxis and treatment of early and advanced stages of Alzheimer's disease.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Camundongos , Animais , Lactente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Lipossomos/uso terapêutico , Precursor de Proteína beta-Amiloide/metabolismo , Donepezila/uso terapêutico , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/uso terapêutico , MicroRNAs/metabolismo , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
3.
Neurobiol Dis ; 177: 105993, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36627028

RESUMO

Clarifying the risk factors and mechanisms that contribute to the onset of cognitive impairment following estrogen depletion is essential for improving the quality of life of older females. In the current study, using behavioral tests, 16S rDNA sequencing, in vivo and in vitro electrophysiology, optogenetics and chemogenetics, we found that high-fat diet (HFD)-accelerated impairment of hippocampus-dependent memory, gut microbiota, and hippocampal theta rhythmogenesis in ovariectomized (OVX) mice and fecal microbiota transplantation rescued these phenomena. The identification of fasting-activated medial septal neurons showed that PV+ GABAergic neurons in the medial septal area (MSA) respond to gut sensory signals. Optogenetic activation of septohippocampal PV+ GABAergic fibers (but not cholinergic fibers) significantly rescued hippocampal theta rhythmogenesis and spatial memory in HFD-fed OVX mice. Resistant starch supplementation (RSHFD) rectified the gut Prevotellaceae and considerably alleviated reduced septal gut-responsive neurons, decreased hippocampal theta rhythm, and impaired hippocampus-dependent memory in HFD-fed OVX mice. Furthermore, chemogenetic inhibition of septal PV+ GABAergic neurons reversed the neuroprotective effects of resistant starch supplementation. These findings highlight the notable gut-sensory nature of medial septal PV+ GABAergic neurons. A HFD accelerates estrogen deficiency-induced cognitive impairment by disrupting the gut Prevotellaceae-septo-hippocampal pathway. This study contributes to a better understanding of the precise gut-brain control of cognition and cognitive impairment in postmenopausal females.


Assuntos
Dieta Hiperlipídica , Memória Espacial , Feminino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Qualidade de Vida , Amido Resistente/metabolismo , Amido Resistente/farmacologia , Hipocampo/metabolismo , Neurônios GABAérgicos/metabolismo , Ritmo Teta/fisiologia
4.
ACS Chem Neurosci ; 12(19): 3672-3682, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34505505

RESUMO

Protein kinase C (PKC) isozymes play essential roles in biological processes, and activation of PKC is proposed to alleviate the symptoms of a variety of diseases. It would be of great significance to find effective pharmacological modulators of PKC isozymes that can be translated for clinical use. Here, using in vitro activity assay, we demonstrated that green tea extract (-)-epigallocatechin-3-gallate (EGCG) dose-dependently activated PKCα with a half effective concentration (EC50) of 0.49 µM. We also performed surface plasmon resonance analysis and found that EGCG binds PKCα with an equilibrium dissociation constant (KD) value of 4.11 × 10-6 mol/L. Further computational flexible docking analysis revealed that EGCG interacted with the catalytic C3-C4 domain of PKCα (PDB: 4RA4) through establishing polar hydrogen bonds with V420, T401, E387, and K368 of PKCα, and the benzene ring group of EGCG hydrophobically interacted with the hydrophobic pocket formed by L345, M470, I479, and V353 of PKCα. Interestingly, the PKCα-selective blocker Ro-32-0432 could compete with EGCG for the same substrate-binding pocket of PKCα. Moreover, we found that EGCG dose-dependently improved the spatial memory, object recognition ability, and hippocampal long-term potentiation of ovariectomized mice, which was offset by Ro-32-0432. Collectively, our findings reveal a novel PKCα agonist and open the way to a new perspective on PKCα pharmacology and the treatment of PKCα-related diseases, including cognitive impairment.


Assuntos
Catequina , Proteína Quinase C-alfa , Animais , Catequina/análogos & derivados , Catequina/farmacologia , Cognição , Estrogênios , Camundongos
5.
Mol Ther Nucleic Acids ; 24: 79-91, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33738140

RESUMO

The mechanism of estrogen deficiency-induced cognitive impairment is still not fully elucidated. In this study, we assessed the effect of microRNA (miRNA) on the memory of long-term estrogen-deficient mice after ovariectomy (OVX) and normal aging. We observed that 5-month OVX and 22-month-old normal aging female mice showed significantly impaired spatial and object recognition memory, declined hippocampal long-term potentiation (LTP), and decreased hippocampal protein kinase C α (PKCα) protein. Quantitative real-time PCR analysis showed upregulated miRNA-23a-3p (miR-23a-3p) in the hippocampus of 5-month OVX and 22-month-old female mice. In vitro, overexpression of miR-23a-3p downregulated PKCα by binding the 3¢ UTRs of Prkca mRNAs, which was prevented by its antisense oligonucleotide AMO-23a. In vivo, adeno-associated virus-mediated overexpression of miR-23a-3p (AAV-pre-miR-23a-3p) suppressed hippocampal PKCα and impaired the memory of mice. Chromatin immunoprecipitation analysis showed that aryl hydrocarbon receptor (AhR) binds the promoter region of miR-23a-3p. The AhR-dependent downregulation of PKCα could be prevented by AMO-23a as well. Furthermore, knockdown of miR-23a-3p using AAV-AMO-23a rescued the cognitive and electrophysiological impairments of OVX and normal aging female mice. We conclude that long-term estrogen deficiency impairs cognition and hippocampal LTP by activating the AhR/miR-23a-3p/PKCα axis. The knockdown of miR-23a-3p may be a potentially valuable therapeutic strategy for estrogen deficiency-induced memory deficits.

6.
J Neuroinflammation ; 17(1): 244, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819407

RESUMO

BACKGROUND: Microglial polarization is a dynamic response to acute brain hypoxia induced by stroke and traumatic brain injury (TBI). However, studies on the polarization of microglia in chronic cerebral circulation insufficiency (CCCI) are limited. Our objective was to investigate the effect of CCCI on microglial polarization after chronic brain hypoperfusion (CBH) and explore the underlying molecular mechanisms. METHODS: CBH model was established by bilateral common carotid artery occlusion (2-vessel occlusion, 2VO) in rats. Using the stereotaxic injection technique, lenti-pre-miR-195 and anti-miR-195 oligonucleotide fragments (lenti-pre-AMO-miR-195) were injeted into the CA1 region of the hippocampus to construct animal models with high or low expression of miR-195. Immunofluorescence staining and flow cytometry were conducted to examine the status of microglial polarization. In vitro, Transwell co-culture system was taken to investigate the role of miR-195 on neuronal-microglial communication through CX3CL1-CX3CR1 signaling. Quantitative real-time PCR was used to detect the level of miR-195 and inflammatory factors. The protein levels of CX3CL1 and CX3CR1 were evaluated by both western blot and immunofluorescence staining. RESULTS: CBH induced by 2VO initiated microglial/macrophage activation in the rat hippocampus from 1 week to 8 weeks, as evaluated by increased ratio of (CD68+ and CD206+)/Iba-1 immunofluorescence. And the microglial/macrophage polarization was shifted towards the M1 phenotype at 8 weeks following CBH. The expression of CX3CL1 and CX3CR1 was increased in the hippocampus of 2VO rats at 8 weeks. An in vitro study in a Transwell co-culture system demonstrated that transfection of either primary-cultured neonatal rat neurons (NRNs) or microglial BV2 cells with AMO-195-induced M1 polarization of BV2 cells and increased CX3CL1 and CX3CR1 expression and that these effects were reversed by miR-195 mimics. Furthermore, the upregulation of miR-195 induced by lenti-pre-miR-195 injection prevented microglial/macrophage polarization to M1 phenotype triggered by hippocampal injection of lenti-pre-AMO-miR-195 and 2VO surgery. CONCLUSIONS: Our findings conclude that downregulation of miR-195 in the hippocampus is involved in CBH-induced microglial/macrophage polarization towards M1 phenotype by governing communication between neurons and microglia through the regulation of CX3CL1 and CX3CR1 signaling. This indicates that miR-195 may provide a new strategy for clinical prevention and treatment of CBH.


Assuntos
Isquemia Encefálica/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Quimiocina CX3CL1/metabolismo , Hipocampo/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Animais , Isquemia Encefálica/genética , Linhagem Celular , Polaridade Celular/fisiologia , Modelos Animais de Doenças , Regulação para Baixo , Regulação da Expressão Gênica , Masculino , MicroRNAs/genética , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
7.
Exp Neurol ; 332: 113389, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32580014

RESUMO

Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.


Assuntos
Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/fisiopatologia , Hipocampo/fisiopatologia , MicroRNAs/genética , Sinapsinas/genética , Vesículas Sinápticas , Regiões 3' não Traduzidas , Animais , Estenose das Carótidas/fisiopatologia , Regulação para Baixo , Glutamatos/metabolismo , Masculino , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Sinapsinas/biossíntese
8.
Cell Commun Signal ; 18(1): 57, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252776

RESUMO

BACKGROUND: Chronic brain hypoperfusion (CBH) is closely related to Alzheimer's disease (AD) and vascular dementia (VaD). Meanwhile, synaptic pathology plays a prominent role in the initial stage of AD and VaD. However, whether and how CBH impairs presynaptic plasticity is currently unclear. METHODS: In the present study, we performed a battery of techniques, including primary neuronal culture, patch clamp, stereotaxic injection of the lentiviral vectors, morris water maze (MWM), dual luciferase reporter assay, FM1-43 fluorescence dye evaluation, qRT-PCR and western blot, to investigate the regulatory effect of miR-153 on hippocampal synaptic vesicle release both in vivo and in vitro. The CBH rat model was generated by bilateral common carotid artery ligation (2VO). RESULTS: Compared to sham rats, 2VO rats presented decreased field excitatory postsynaptic potential (fEPSP) amplitude and increased paired-pulse ratios (PPRs) in the CA3-CA1 pathway, as well as significantly decreased expression of multiple vesicle fusion-related proteins, including SNAP-25, VAMP-2, syntaxin-1A and synaptotagmin-1, in the hippocampi. The levels of microRNA-153 (miR-153) were upregulated in the hippocampi of rats following 2VO surgery, and in the plasma of dementia patients. The expression of the vesicle fusion-related proteins affected by 2VO was inhibited by miR-153, elevated by miR-153 inhibition, and unchanged by binding-site mutation or miR masks. FM1-43 fluorescence images showed that miR-153 blunted vesicle exocytosis, but this effect was prevented by either 2'-O-methyl antisense oligoribonucleotides to miR-153 (AMO-153) and miR-masking of the miR-153 binding site in the 3' untranslated region (3'UTR) of the Snap25, Vamp2, Stx1a and Syt1 genes. Overexpression of miR-153 by lentiviral vector-mediated miR-153 mimics (lenti-pre-miR-153) decreased the fEPSP amplitude and elevated the PPR in the rat hippocampus, whereas overexpression of the antisense molecule (lenti-AMO-153) reversed these changes triggered by 2VO. Furthermore, lenti-AMO-153 attenuated the cognitive decline of 2VO rats. CONCLUSIONS: Overexpression of miR-153 controls CBH-induced presynaptic vesicle release impairment by posttranscriptionally regulating the expression of four vesicle release-related proteins by targeting the 3'UTRs of the Stx1a, Snap25, Vamp2 and Syt1 genes. These findings identify a novel mechanism of presynaptic plasticity impairment during CBH, which may be a new drug target for prevention or treatment of AD and VaD. Video Abstract.


Assuntos
Demência Vascular/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , MicroRNAs/fisiologia , Vesículas Sinápticas/metabolismo , Idoso , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Proteína 25 Associada a Sinaptossoma/metabolismo , Sinaptotagmina I/metabolismo , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
9.
J Mol Neurosci ; 70(6): 861-870, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32125624

RESUMO

Whether blood amyloid-ß (Aß) could be a peripheral biomarker of Alzheimer's disease (AD) remains in dispute. In the present study, we conducted a meta-analysis with 19 citations searched from Embase, PubMed, and the Cochrane Library database. Weighted mean difference (WMD) with 95% confidence intervals (CIs) was used to estimate the effect size. We firstly analyzed the plasma Aß40, Aß42, and Aß42/Aß40 ratio in AD and control group subjects. However, only a lower level of plasma Aß42 was figured out in AD group subjects with weak statistical significance (WMD 1.82; 95% CI 0.59, 3.06; P = 0.004; I2 = 84%). We considered that the medical histories of control subjects could influence the biomarker ability of plasma Aß. Therefore, subgroup analyses were then carried out based on a new recruiting criterion for control subjects, defining as no afflictions of any Aß-related diseases. Surprisingly, AD group subjects showed a significant decrease in plasma Aß42/Aß40 ratio with low heterogeneity among studies (WMD 0.02; 95% CI 0.02, 0.02; P < 0.00001; I2 = 0%). Moreover, not only the Aß42/Aß40 ratio but also Aß42 and Aß40 were indifferent between AD and pseudo-control subjects which might be afflicted with Aß-related diseases. This meta-analysis demonstrated that medical histories of control subjects were interference factors impeding plasma Aß to be a biomarker of AD.


Assuntos
Doença de Alzheimer/sangue , Peptídeos beta-Amiloides/sangue , Fragmentos de Peptídeos/sangue , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Humanos , Anamnese/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...