Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112579, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38944951

RESUMO

Obstructive sleep apnea, typically characterized by chronic intermittent hypoxia (CIH), is linked to cognitive dysfunction in children. Ferroptosis, a novel form of cell death characterized by lethal iron accumulation and lipid peroxidation, is implicated in neurodegenerative diseases and ischemia-reperfusion injuries. Nevertheless, its contribution to CIH-induced cognitive dysfunction and its interaction with endoplasmic reticulum stress (ERS) remain uncertain. In this study, utilizing a CIH model in 4-week-old male mice, we investigated ferroptosis and its potential involvement in ERS regulation during cognitive dysfunction. Our findings indicate ferroptosis activation in prefrontal cortex neurons, leading to neuron loss, mitochondrial damage, decreased levels of GPX4, SLC7A11, FTL, and FTH, increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), Fe2+, ACSL4, TFRC, along with the activation of ERS-related PERK-ATF4-CHOP pathway. Treatment with the ferroptosis inhibitor liproxstatin-1 (Lip-1) and the iron chelator deferoxamine (DFO) effectively mitigated the neuron injury and cognitive dysfunction induced by CIH, significantly reducing Fe2+ and partly restoring expression levels of ferroptosis-related proteins. Furhermore, the use of Lip-1 and DFO downregulated p-PERK, ATF4 and CHOP, and upregulated Nrf2 expression, suggesting that inhibiting ferroptosis reduce ERS and that the transcription factor Nrf2 is involved in the process. In summary, our findings indicate that cognitive impairment in CIH mice correlates with the induction of neuronal ferroptosis, facilitated by the System xc - GPX4 functional axis, lipid peroxidation, and the iron metabolism pathway, along with ferroptosis-mediated ERS in the prefrontal cortex. Nrf2 has been identified as a potential regulator of ferroptosis and ERS involved in the context of CIH.

2.
Int Immunopharmacol ; 135: 112311, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781607

RESUMO

OBJECTIVE: Obstructive Sleep Apnea (OSA) during pregnancy is characterized by intermittent hypoxia (IH) during sleep and will lead to the rise of oxidative stress in the fetal body. Pyroptosis, a type of inflammatory and programmable cell death mediated by Gasdermin D (GSDMD), plays a substantial role in oxygen deprivation's contribution to neural system damage. Existing research shows that Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a protective role in alleviating brain tissue pyroptosis. We speculate that exogenous NADPH may play a protective role in OSA during pregnancy. METHODS: A model of GIH group was established to simulate the pathophysiological mechanisms of OSA during pregnant and AIR group was established by giving the same frequency. Sham group was established by injecting NS and the NADPH group was established and given exogenous NADPH. We utilized the Morris Water Maze to assess cognitive function impairment, Luxol Fast Blue (LBF) staining to confirm myelin sheath formation, TUNEL staining to examine cell death in fetal mice brain tissue, and Western blotting to detect pertinent protein expressions. RESULTS: The GIH group offspring exhibited decreases in spatial learning and memory abilities, reduced numbers of oligodendrocytes and formed myelin, as well as increased expression of pyroptosis-related proteins. The NADPH group offspring showed restoration in spatial learning and memory abilities increased counts of oligodendrocytes and formed myelin sheaths, in addition to decreased expression of pyroptosis-related. CONCLUSIONS: This study demonstrates that early injection of exogenous NADPH can alleviate the damage to fetal brain development caused by gestational intermittent hypoxia (GIH).


Assuntos
NADP , Piroptose , Animais , Gravidez , Feminino , Camundongos , NADP/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/metabolismo , Hipóxia/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal
3.
Int Immunopharmacol ; 116: 109813, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37254290

RESUMO

OBJECTIVE: Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a sleep respiratory disease associated with cognitive impairment, The nuclear factor erythroid 2 related factor 2 (Nrf2) plays a neuroprotective role. This study was designed to investigate the mechanism of Nrf2 protecting neural cells from endoplasmic reticulum stress (ERS), induced by chronic intermittent hypoxia (CIH) and sleep fragmentation (SF) which caused cognitive impairment in mice. METHODS: Establishment of CIH and SF mice to simulate OSAHS mouse model. An eight-arm maze behavior test measured the cognitive function of mice, and Nissl staining and TUNEL staining were used to detect pathological changes in hippocampal neurons. The expression of ERS and Nrf2 and its downstream related mRNAs and proteins were detected by qRT-PCR and Western blotting. RESULTS: CIH and SF lead to cognitive impairment in mice, and Sulforaphane (SFN, Nrf2 agonist) plays a protective role, while Nrf2-KO aggravates the cognitive impairment. CIH and SF reduced the number of Nissl bodies in neurons and induced apoptosis. The mRNA levels of BiP, CHOP, Nrf2, GCLC and Prdx1 in CIH, SF and CIH + SF groups were increased (p = 0.001), whereas the mRNA levels of BiP and CHOP in the CIH + SF + SFN group were decreased (p = 0.02) while those of Nrf2 and Prdx1 were increased (p = 0.005). The CIH + SF + Nrf2-KO group, the mRNA levels of CHOP were increased (p = 0.001) while Nrf2, GCLC and Prdx1 were decreased (p = 0.001). The protein levels of CHOP and active Caspase-12 in CIH, SF, CIH + SF and CIH + SF + Nrf2-KO groups were increased (p = 0.03), while those of Prdx1 and Nrf2 were increased (p = 0.03) in the CIH + SF + SFN group, while decreased (p = 0.02) in the Nrf2-KO group. CONCLUSIONS: Chronic intermittent hypoxia(CIH) and sleep fragmentation(SF) could aggravate the inflammatory response of nerve cells through endoplasmic reticulum stress, leading to apoptosis of nerve cells, and causing cognitive impairment in mice.Nrf2 alleviates cognitive impairment induced by chronic intermittent hypoxia and sleep fragmentation by modulating endoplasmic reticulum stress. Activation of Nrf2 protects cognitive impairment through the Nrf2-Prdx1 signaling pathway.


Assuntos
Disfunção Cognitiva , Fator 2 Relacionado a NF-E2 , Apneia Obstrutiva do Sono , Animais , Camundongos , Modelos Animais de Doenças , Hipóxia/complicações , Fator 2 Relacionado a NF-E2/genética , Apneia Obstrutiva do Sono/complicações , Privação do Sono/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...