Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Environ Res ; 258: 119415, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906446

RESUMO

BACKGROUND: PM2.5, a known public health risk, is increasingly linked to intestinal disorders, however, the mechanisms of its impact are not fully understood. PURPOSE: This study aimed to explore the impact of chronic PM2.5 exposure on intestinal barrier integrity and to uncover the underlying molecular mechanisms. METHODS: C57BL/6 J mice were exposed to either concentrated ambient PM2.5 (CPM) or filtered air (FA) for six months to simulate urban pollution conditions. We evaluated intestinal barrier damage, microbial shifts, and metabolic changes through histopathology, metagenomics, and metabolomics. Analysis of the TLR signaling pathway was also conducted. RESULTS: The mean concentration of PM2.5 in the CPM exposure chamber was consistently measured at 70.9 ± 26.8 µg/m³ throughout the study period. Our findings show that chronic CPM exposure significantly compromises intestinal barrier integrity, as indicated by reduced expression of the key tight junction proteins Occludin and Tjp1/Zo-1. Metagenomic sequencing revealed significant shifts in the microbial landscape, identifying 35 differentially abundant species. Notably, there was an increase in pro-inflammatory nongastric Helicobacter species and a decrease in beneficial bacteria, such as Lactobacillus intestinalis, Lactobacillus sp. ASF360, and Eubacterium rectale. Metabolomic analysis further identified 26 significantly altered metabolites commonly associated with intestinal diseases. A strong correlation between altered bacterial species and metabolites was also observed. For example, 4 Helicobacter species all showed positive correlations with 13 metabolites, including Lactate, Bile acids, Pyruvate and Glutamate. Additionally, increased expression levels of TLR2, TLR5, Myd88, and NLRP3 proteins were noted, and their expression patterns showed a strong correlation, suggesting a possible involvement of the TLR2/5-MyD88-NLRP3 signaling pathway. CONCLUSIONS: Chronic CPM exposure induces intestinal barrier dysfunction, microbial dysbiosis, metabolic imbalance, and activation of the TLR2/5-MyD88-NLRP3 inflammasome. These findings highlight the urgent need for intervention strategies to mitigate the detrimental effects of air pollution on intestinal health and identify potential therapeutic targets.

3.
Phenomics ; 4(1): 51-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38605906

RESUMO

Cardiovascular health metrics are now widely recognized as modifiable risk factors for cognitive decline and dementia. Metabolic perturbations might play roles in the linkage of cardiovascular diseases and dementia. Circulating metabolites profiling by metabolomics may improve understanding of the potential mechanism by which cardiovascular risk factors contribute to cognitive decline. In a prospective community-based cohort in China (n = 725), 312 serum metabolic phenotypes were quantified, and cardiovascular health score was calculated including smoking, exercise, sleep, diet, body mass index, blood pressure, and blood glucose. Cognitive function assessments were conducted in baseline and follow-up visits to identify longitudinal cognitive decline. A better cardiovascular health was significantly associated with lower risk of concentration decline and orientation decline (hazard ratio (HR): 0.84-0.90; p < 0.05). Apolipoprotein-A1, high-density lipoprotein (HDL) cholesterol, cholesterol ester, and phospholipid concentrations were significantly associated with a lower risk of longitudinal memory and orientation decline (p < 0.05 and adjusted-p < 0.20). Mediation analysis suggested that the negative association between health status and the risk of orientation decline was partly mediated by cholesterol ester and total lipids in HDL-2 and -3 (proportion of mediation: 7.68-8.21%, both p < 0.05). Cardiovascular risk factors were associated with greater risks of cognitive decline, which were found to be mediated by circulating lipoproteins, particularly the medium-size HDL components. These findings underscore the potential of utilizing lipoproteins as targets for early stage dementia screening and intervention. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00120-2.

4.
Cell Discov ; 10(1): 17, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38346975

RESUMO

Ketogenic diet (KD) alleviates refractory epilepsy and reduces seizures in children. However, the metabolic/cell biologic mechanisms by which the KD exerts its antiepileptic efficacy remain elusive. Herein, we report that KD-produced ß-hydroxybutyric acid (BHB) augments brain gamma-aminobutyric acid (GABA) and the GABA/glutamate ratio to inhibit epilepsy. The KD ameliorated pentetrazol-induced epilepsy in mice. Mechanistically, KD-produced BHB, but not other ketone bodies, inhibited HDAC1/HDAC2, increased H3K27 acetylation, and transcriptionally upregulated SIRT4 and glutamate decarboxylase 1 (GAD1). BHB-induced SIRT4 de-carbamylated and inactivated glutamate dehydrogenase to preserve glutamate for GABA synthesis, and GAD1 upregulation increased mouse brain GABA/glutamate ratio to inhibit neuron excitation. BHB administration in mice inhibited epilepsy induced by pentetrazol. BHB-mediated relief of epilepsy required high GABA level and GABA/glutamate ratio. These results identified BHB as the major antiepileptic metabolite of the KD and suggested that BHB may serve as an alternative and less toxic antiepileptic agent than KD.

5.
BMC Microbiol ; 23(1): 282, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37784030

RESUMO

BACKGROUND: The pathogenesis of intrahepatic cholestasis of pregnancy (ICP) remains unknown. The gut microbiome and its metabolites play important roles in bile acid metabolism, and previous studies have indicated the association of the gut microbiome with ICP. METHODS: We recruited a cohort of 5100 participants, and 20 participants were enrolled in the severe ICP group, matched with 20 participants in the mild ICP group and 20 controls. 16S rRNA sequencing and nontargeting metabolomics were adapted to explore the gut microbiome and fecal metabolites. RESULTS: An increase in richness and a dramatic deviation in composition were found in the gut microbiome in ICP. Decreased Firmicutes and Bacteroidetes abundances and increased Proteobacteria abundances were found in women with severe but not mild ICP compared to healthy pregnant women. Escherichia-Shigella and Lachnoclostridium abundances increased, whereas Ruminococcaceae abundance decreased in ICP group, especially in severe ICP group. The fecal metabolite composition and diversity presented typical variation in severe ICP. A significant increase in bile acid, formate and succinate levels and a decrease in butyrate and hypoxanthine levels were found in women with severe ICP. The MIMOSA model indicated that genera Ruminococcus gnavus group, Lachnospiraceae FCS020 group, and Lachnospiraceae NK4A136 group contributed significantly to the metabolism of hypoxanthine, which was significantly depleted in subjects with severe ICP. Genus Acinetobacter contributed significantly to formate metabolism, which was significantly enriched in subjects with severe ICP. CONCLUSIONS: Women with severe but not mild ICP harbored a unique gut microbiome and fecal metabolites compared to healthy controls. Based on these profiles, we hypothesized that the gut microbiome was involved in bile acid metabolism through metabolites, affecting ICP pathogenesis and development, especially severe ICP.


Assuntos
Microbioma Gastrointestinal , Humanos , Feminino , Gravidez , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , Ácidos e Sais Biliares , Hipoxantinas
6.
Nat Commun ; 13(1): 4291, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879296

RESUMO

Whether amino acids act on cellular insulin signaling remains unclear, given that increased circulating amino acid levels are associated with the onset of type 2 diabetes (T2D). Here, we report that phenylalanine modifies insulin receptor beta (IRß) and inactivates insulin signaling and glucose uptake. Mice fed phenylalanine-rich chow or phenylalanine-producing aspartame or overexpressing human phenylalanyl-tRNA synthetase (hFARS) develop insulin resistance and T2D symptoms. Mechanistically, FARS phenylalanylate lysine 1057/1079 of IRß (F-K1057/1079), inactivating IRß and preventing insulin from promoting glucose uptake by cells. SIRT1 reverse F-K1057/1079 and counteract the insulin-inactivating effects of hFARS and phenylalanine. F-K1057/1079 and SIRT1 levels in white blood cells from T2D patients are positively and negatively correlated with T2D onset, respectively. Blocking F-K1057/1079 with phenylalaninol sensitizes insulin signaling and relieves T2D symptoms in hFARS-transgenic and db/db mice. These findings shed light on the activation of insulin signaling and T2D progression through inhibition of phenylalanylation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Insulina , Resistência à Insulina/fisiologia , Camundongos , Fenilalanina , Sirtuína 1/genética
8.
Nat Microbiol ; 7(5): 707-715, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35437328

RESUMO

The mosquito microbiota can influence host physiology and vector competence, but a detailed understanding of these processes is lacking. Here we found that the gut microbiota of Anopheles stephensi, a competent malaria vector, is involved in tryptophan metabolism and is responsible for the catabolism of the peritrophic matrix impairing tryptophan metabolites. Antibiotic elimination of the microbiota led to the accumulation of tryptophan and its metabolites-kynurenine, 3-hydroxykynurenine (3-HK) and xanthurenic acid. Of these metabolites, 3-HK impaired the structure of the peritrophic matrix and promoted Plasmodium berghei infection. Among the major gut microbiota members in A. stephensi, Pseudomonas alcaligenes catabolized 3-HK as revealed by whole-genome sequencing and LC-MS metabolic analysis. The genome of P. alcaligenes encodes kynureninase (KynU) that is responsible for the conversion of 3-HK to 3-hydroxyanthranilic acid. Mutation of KynU resulted in a P. alcaligenes strain that was unable to metabolize 3-HK and unable to protect the peritrophic matrix. Colonization of A. stephensi with KynU-mutated P. alcaligenes failed to protect mosquitoes against parasite infection as compared with mosquitoes colonized with wild-type P. alcaligenes. In summary, this study identifies an unexpected function of mosquito gut microbiota in controlling mosquito tryptophan metabolism, with important implications for vector competence.


Assuntos
Anopheles , Microbioma Gastrointestinal , Malária , Animais , Anopheles/parasitologia , Malária/parasitologia , Mosquitos Vetores/genética , Triptofano
9.
Cell Rep ; 38(11): 110509, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294873

RESUMO

Protein fatty acylation regulates numerous cell signaling pathways. Polyunsaturated fatty acids (PUFAs) exert a plethora of physiological effects, including cell signaling regulation, with underlying mechanisms to be fully understood. Herein, we report that docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) regulate PI3K-AKT signaling by modifying PDK1 and AKT2. DHA-administered mice exhibit altered phosphorylation of proteins in signaling pathways. Methylene bridge-containing DHA/EPA acylate δ1 carbon of tryptophan 448/543 in PDK1 and tryptophan 414 in AKT2 via free radical pathway, recruit both the proteins to the cytoplasmic membrane, and activate PI3K signaling and glucose uptake in a tryptophan acylation-dependent but insulin-independent manner in cultured cells and in mice. DHA/EPA deplete cytosolic PDK1 and AKT2 and induce insulin resistance. Akt2 knockout in mice abrogates DHA/EPA-induced PI3K-AKT signaling. Our results identify PUFA's methylene bridge tryptophan acylation, a protein fatty acylation that regulates cell signaling and may underlie multifaceted effects of methylene-bridge-containing PUFAs.


Assuntos
Fosfatidilinositol 3-Quinases , Triptofano , Acilação , Animais , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Insaturados , Glucose/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Triptofano/metabolismo
11.
Nat Metab ; 3(6): 859-875, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34140692

RESUMO

Global histone acetylation varies with changes in the nutrient and cell cycle phases; however, the mechanisms connecting these variations are not fully understood. Herein, we report that nutrient-related and cell-cycle-regulated nuclear acetate regulates global histone acetylation. Histone deacetylation-generated acetate accumulates in the nucleus and induces histone hyperacetylation. The nuclear acetate levels were controlled by glycolytic enzyme triosephosphate isomerase 1 (TPI1). Cyclin-dependent kinase 2 (CDK2), which is phosphorylated and activated by nutrient-activated mTORC1, phosphorylates TPI1 Ser 117 and promotes nuclear translocation of TPI1, decreases nuclear dihydroxyacetone phosphate (DHAP) and induces nuclear acetate accumulation because DHAP scavenges acetate via the formation of 1-acetyl-DHAP. CDK2 accumulates in the cytosol during the late G1/S phases. Inactivation or blockade of nuclear translocation of TPI1 abrogates nutrient-dependent and cell-cycle-dependent global histone acetylation, chromatin condensation, gene transcription and DNA replication. These results identify the mechanism of maintaining global histone acetylation by nutrient and cell cycle signals.


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Histonas/metabolismo , Nutrientes/metabolismo , Transdução de Sinais , Acetatos/metabolismo , Acetilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Replicação do DNA , Humanos , Fosforilação , Transcrição Gênica
12.
Front Psychiatry ; 12: 624767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045978

RESUMO

Background: Autism spectrum disorder (ASD) is a group of early-onset neurodevelopmental disorders. However, there is no valuable biomarker for the early diagnosis of ASD. Our large-scale and multi-center study aims to identify metabolic variations between ASD and healthy children and to investigate differential metabolites and associated pathogenic mechanisms. Methods: One hundred and seventeen autistic children and 119 healthy children were recruited from research centers of 7 cities. Urine samples were assayed by 1H-NMR metabolomics analysis to detect metabolic variations. Multivariate statistical analysis, including principal component analysis (PCA), and orthogonal projection to latent structure discriminant analysis (OPLS-DA), as well as univariate analysis were used to assess differential metabolites between the ASD and control groups. The differential metabolites were further analyzed by receiver operating characteristics (ROC) curve analysis and metabolic pathways analysis. Results: Compared with the control group, the ASD group showed higher levels of glycine, guanidinoacetic acid, creatine, hydroxyphenylacetylglycine, phenylacetylglycine, and formate and lower levels of 3-aminoisobutanoic acid, alanine, taurine, creatinine, hypoxanthine, and N-methylnicotinamide. ROC curve showed relatively significant diagnostic values for hypoxanthine [area under the curve (AUC) = 0.657, 95% CI 0.588 to 0.726], creatinine (AUC = 0.639, 95% CI 0.569 to 0.709), creatine (AUC = 0.623, 95% CI 0.552 to 0.694), N-methylnicotinamide (AUC = 0.595, 95% CI 0.523 to 0.668), and guanidinoacetic acid (AUC = 0.574, 95% CI 0.501 to 0.647) in the ASD group. Combining the metabolites creatine, creatinine and hypoxanthine, the AUC of the ROC curve reached 0.720 (95% CI 0.659 to 0.777). Significantly altered metabolite pathways associated with differential metabolites were glycine, serine and threonine metabolism, arginine and proline metabolism, and taurine and hypotaurine metabolism. Conclusions: Urinary amino acid metabolites were significantly altered in children with ASD. Amino acid metabolic pathways might play important roles in the pathogenic mechanisms of ASD.

13.
Cell Rep ; 35(3): 108992, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882310

RESUMO

Plant-nectar-derived sugar is the major energy source for mosquitoes, but its influence on vector competence for malaria parasites remains unclear. Here, we show that Plasmodium berghei infection of Anopheles stephensi results in global metabolome changes, with the most significant impact on glucose metabolism. Feeding on glucose or trehalose (the main hemolymph sugars) renders the mosquito more susceptible to Plasmodium infection by alkalizing the mosquito midgut. The glucose/trehalose diets promote proliferation of a commensal bacterium, Asaia bogorensis, that remodels glucose metabolism in a way that increases midgut pH, thereby promoting Plasmodium gametogenesis. We also demonstrate that the sugar composition from different natural plant nectars influences A. bogorensis growth, resulting in a greater permissiveness to Plasmodium. Altogether, our results demonstrate that dietary glucose is an important determinant of mosquito vector competency for Plasmodium, further highlighting a key role for mosquito-microbiota interactions in regulating the development of the malaria parasite.


Assuntos
Acetobacteraceae/metabolismo , Anopheles/metabolismo , Glucose/farmacologia , Metaboloma , Mosquitos Vetores/metabolismo , Trealose/farmacologia , Acetobacteraceae/crescimento & desenvolvimento , Animais , Anopheles/efeitos dos fármacos , Anopheles/microbiologia , Anopheles/parasitologia , Sistema Digestório/microbiologia , Sistema Digestório/parasitologia , Feminino , Gametogênese/efeitos dos fármacos , Gametogênese/genética , Regulação da Expressão Gênica , Glucose/metabolismo , Interações Hospedeiro-Patógeno/genética , Concentração de Íons de Hidrogênio , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/genética , Malária/parasitologia , Microbiota/genética , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Simbiose/genética , Trealose/metabolismo
14.
Environ Pollut ; 272: 115987, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213950

RESUMO

Exposure to ambient fine particular matter (PM2.5) are linked to an increased risk of metabolic disorders, leading to enhanced rate of many diseases, such as inflammatory bowel disease (IBD), cardiovascular diseases, and pulmonary diseases; nevertheless, the underlying mechanisms remain poorly understood. In this study, BALB/c mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CPM) for 2 months using a versatile aerosol concentration enrichment system(VACES). We found subchronic CPM exposure caused significant lung and intestinal damage, as well as systemic inflammatory reactions. In addition, serum and BALFs (bronchoalveolar lavage fluids) metabolites involved in many metabolic pathways in the CPM exposed mice were markedly disrupted upon PM2.5 exposure. Five metabolites (glutamate, glutamine, formate, pyruvate and lactate) with excellent discriminatory power (AUC = 1, p < 0.001) were identified to predict PM2.5 exposure related toxicities. Furthermore, subchronic exposure to CPM not only significantly decreased the richness and composition of the gut microbiota, but also the lung microbiota. Strong associations were found between several gut and lung bacterial flora changes and systemic metabolic abnormalities. Our study showed exposure to ambient PM2.5 not only caused dysbiosis in the gut and lung, but also significant systemic and local metabolic alterations. Alterations in gut and lung microbiota were strongly correlated with metabolic abnormalities. Our study suggests potential roles of gut and lung microbiota in PM2.5 caused metabolic disorders.


Assuntos
Poluentes Atmosféricos , Microbioma Gastrointestinal , Microbiota , Poluentes Atmosféricos/toxicidade , Animais , Pulmão , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado/toxicidade
15.
EMBO J ; 39(24): e105896, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33140861

RESUMO

COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.


Assuntos
COVID-19/sangue , COVID-19/patologia , Biomarcadores/sangue , COVID-19/imunologia , COVID-19/virologia , Feminino , Genômica/métodos , Humanos , Lipoproteínas/metabolismo , Masculino , Metabolômica/métodos , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral
16.
Aging (Albany NY) ; 12(15): 15302-15313, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645693

RESUMO

Metabolomics provides a promising tool for understanding the pathophysiology and identifying biomarkers of atherosclerosis. We aimed to estimate the associations between circulating metabolites and subclinical atherosclerosis in a Chinese cohort. The baseline serum levels of 38 metabolites of 489 individuals were measured using nuclear magnetic resonance. Associations between metabolites and brachial-ankle pulse wave velocity (baPWV) and carotid intima-media thickness (IMT) were determined using a linear regression. A multivariate logistic regression was used to evaluate the associations of metabolites and subclinical atherosclerosis defined as high baPWV (>median) and increased IMT (>median). After adjusting for covariates and multiple testing corrections (false discovery rate; FDR), two branched-chain amino acids (BCAAs; leucine and isoleucine), one ketone (acetoacetate), and two lipids were positively associated with baPWV. Lactate was inversely associated with IMT. Elevated acetoacetate levels (odds ratio: 1.53, 95% confidence interval: 1.20-1.97; FDR <0.001) and four other lipid features were associated with an increased risk of high baPWV. Alterations in circulating lipids and BCAAs were associated with the risk of arterial stiffness in the middle-aged Chinese population. Our findings provide clues to understanding the potential mechanisms of subclinical atherosclerosis; however, further validation in a broader population context and the exploration of potential clinical applications are warranted.


Assuntos
Aterosclerose/sangue , Índice Tornozelo-Braço , Povo Asiático , Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Biomarcadores/sangue , Espessura Intima-Media Carotídea , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Onda de Pulso
17.
J Proteome Res ; 19(8): 3352-3363, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32498518

RESUMO

Plant seed germination involving dynamic water uptakes and biochemical changes is essential for preservation of plant germplasm resource and worldwide food supply. To understand the germination-associated compartmental biochemistry changes, we quantitatively analyzed the metabolite composition (metabonome) for embryonic axes, cotyledons, and testae of mung bean (Vigna radiata) seeds in three germination phases using the NMR-based metabonomics approach. We found that three structures of mung bean seeds had distinct metabonomic phenotypes dominated by 53 metabolites including amino acids, carbohydrates, organic acids, choline metabolites, nucleotides/nucleosides, and shikimate-mediated secondary metabolites together with calcium and magnesium cations. During germination, all three seed structures had outstanding but distinct metabonomic changes. Both embryonic axis and cotyledon showed remarkable metabolic changes related to degradation of carbohydrates and proteins, metabolism of amino acids, nucleotides/nucleosides, and choline together with energy metabolism and shikimate-mediated plant secondary metabolism. The metabonomic changes in these two structures were mostly related to multiple functions for biochemical activities in the former and nutrient mobilizations in the latter. In contrast, testa metabonomic changes mainly reflected the metabolite leakages from the other two structures. Phase 1 of germination was featured with degradation of oligosaccharides and proteins and recycling of stored nucleic acids together with anaerobic metabolisms, whereas phase 2 was dominated by energy metabolism, biosynthesis of osmolytes, and plant secondary metabolites. These provided essential metabolic information for understanding the biochemistry associated with early events of seed germination and possible metabolic functions of different seed structures for plant development.


Assuntos
Germinação , Vigna , Metabolômica , Fenótipo , Sementes
18.
Alzheimers Dement ; 16(5): 779-788, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32270572

RESUMO

INTRODUCTION: Metabolomics provide a promising tool to understand the pathogenesis and to identify novel biomarkers of dementia. This study aimed to determine circulating metabolites associated with incident dementia in a Chinese cohort, and whether a selected metabolite panel could predict dementia. METHODS: Thirty-eight metabolites in baseline serum were profiled by nuclear magnetic resonance in 1440 dementia-free participants followed 5 years in the Shanghai Aging Study. RESULTS: Higher serum levels of glutamine and O-acetyl-glycoproteins were associated with increased risk of dementia, whereas glutamate, tyrosine, acetate, glycine, and phenylalanine were negatively related to incident dementia. A panel of five metabolites selected by least absolute shrinkage and selection operator within cross-validation regression analysis could predict incident dementia with an area under the receiver-operating characteristic curve of 0.72. DISCUSSION: We identified seven candidate serum metabolic biomarkers for dementia. These findings and the underlying biological mechanisms need to be further replicated and elucidated in future studies.


Assuntos
Envelhecimento , Biomarcadores , Demência , Metabolômica , Idoso , Povo Asiático , Biomarcadores/sangue , Biomarcadores/metabolismo , China , Estudos de Coortes , Demência/sangue , Demência/metabolismo , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino
19.
Int J Biol Sci ; 16(7): 1166-1179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174792

RESUMO

Carbon tetrachloride (CCl4), Concanavalin A (ConA), bile duct ligation (BDL), and liver resection (LR) are four types of commonly used mouse models of acute liver injury. However, these four models belong to different types of liver cell damage while their application situations are often confounded. In addition, the systematic changes of multiple extra-liver organs after acute liver injury and the crosstalk between liver and extra-liver organs remain unclear. Here, we aim to map the morphological, metabolomic and transcriptomic changes systematically after acute liver injury and search for the potential crosstalk between the liver and the extra-liver organs. Significant changes of transcriptome were observed in multiple extra-liver organs after different types of acute liver injury despite dramatic morphological damage only occurred in lung tissues of the ConA/BDL models and spleen tissues in the ConA model. Liver transcriptomic changes initiated the serum metabolomic alterations which correlated to transcriptomic variation in lung, kidney, and brain tissues of BDL and LR models. The potential crosstalk might lead to pulmonary damage and development of hepatorenal syndrome (HRS) and hepatic encephalopathy (HE) during liver injury. Serum derived from acute liver injury mice damaged alveolar epithelial cells and human podocytes in vitro. Our data indicated that different types of acute liver injury led to different transcriptomic changes within extra-liver organs. Integration of serum metabolomics and transcriptomics from multiple tissues can improve our understanding of acute liver injury and its effect on the other organs.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Biologia Computacional , Modelos Animais de Doenças , Citometria de Fluxo , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Testes de Função Respiratória , Análise de Sequência de RNA
20.
Cell Tissue Res ; 380(1): 143-153, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31811407

RESUMO

We recently reported low-density lipoprotein receptor-related protein 6 (LRP6) decreased in dilated cardiomyopathy hearts, and cardiac-specific knockout mice displayed lethal heart failure through activation of dynamin-related protein 1 (Drp1). We also observed lipid accumulation in LRP6 deficiency hearts, but the detailed molecular mechanisms are unclear. Here, we detected fatty acids components in LRP6 deficiency hearts and explored the potential molecular mechanisms. Fatty acid analysis by GC-FID/MS revealed cardiac-specific LRP6 knockout induced the higher level of total fatty acids and some medium-long-chain fatty acids (C16:0, C18:1n9 and C18:2n6) than in control hearts. Carnitine palmitoyltransferase 1b (CPT1b), a rate-limiting enzyme of mitochondrial ß-oxidation in adult heart, was sharply decreased in LRP6 deficiency hearts, coincident with the activation of Drp1. Drp1 inhibitor greatly improved cardiac dysfunction and attenuated the increase in total fatty acids and fatty acids C16:0, C18:1n9 in LRP6 deficiency hearts. It also greatly inhibited the decrease in the cardiac expression of CPT1b and the transcriptional factors CCCTC-binding factor (CTCF) and c-Myc induced by cardiac-specific LRP6 knockout in mice. C-Myc but not CTCF was identified to regulate CPT1b expression and lipid accumulation in cardiomyocytes in vitro. The present study indicated cardiac-specific LRP6 knockout induced lipid accumulation by Drp1/CPT1b pathway in adult mice, and c-Myc is involved in the process. It suggests that LRP6 regulates fatty acid metabolism in adult heart.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Dinaminas/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Dinaminas/deficiência , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...