Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 205: 116618, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908191

RESUMO

Oil spill and microplastic (MP) pollution are the main problems in the marine environment. After an oil spill, the oil film may be dispersed into the water column in the form of droplets under the action of ocean waves. In this study, the sea condition was simulated through the batch conical flask oscillation experiment. Merey crude oil was selected as experimental oil, and polyethylene (PE) and polystyrene (PS) were used as experimental MP. The effects of MP properties (type, concentration and size) on the dispersion of spilled oil were investigated. It is found that for each MP, the oil dispersion efficiency (ODE) increased rapidly at first and then tended to be stable, which all reached the maximum at 360 min. When the concentrations of PE and PS increased from 0 to 100 mg/L, the maximum ODE decreased from 32.64 % to 13.72 % and 10.75 %, respectively, indicating that the presence of MP inhibits the oil dispersion. At the same oscillation time, the volumetric mean diameter (VMD) of dispersed oil increased with the MP concentration. When the particle size of PE and PS increased from 13 to 1000 µm, the maximum ODE increased from 24.74 % to 31.49 % and 28.60 %, respectively. However, the VMD decreased with the size of MP. In addition, the time series of the oil adsorption rate by the MP were well fitted by the kinetic models. The results of this research deepen the understanding of the migration law of spilled oil to the marine environment in the presence of MP, and may further improve the ability of marine environmental scientists to predict the fate of oil spill.

2.
Mar Pollut Bull ; 195: 115542, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37714077

RESUMO

Recently, the fate of spilled oil in the presence of microplastics (MPs) in the sea has attracted attention of researchers. Merey crude oil and polyethylene terephthalate (PET) were used as the experimental materials in this study. The effects of mixing energy and dispersant dosage on oil dispersion and sedimentation in the presence of MPs in the water column were investigated by laboratory experiments simulating actual sea conditions. The increase of mixing energy showed a promoting effect on oil dispersion. When the oscillation frequency increased from 140 rpm to 180 rpm, the oil dispersion efficiency (ODE) ranged from 2.1 %-3.7 % to 17.4 %-30.8 %, and the volumetric mean diameter (VMD) of the suspended oil droplets/MPs-oil agglomerates (MOA) decreased from 99.9-131.4 µm to 76.6-88.2 µm after 2 h oscillation. The application of chemical dispersant led to an increase in both the quantity and size of the formed sunken MPs-oil-dispersant agglomerates (MODA). At the dispersant-to-oil ratio (DOR) of 1:5, the ODE declined from 77.7 % to 62.6 % when the MPs concentration increased from 0 to 150 mg/L, while the oil sinking efficiency (OSE) rose from 3.4 % to 15.6 % when the MPs increased from 25 to 150 mg/L; the maximum size of the sunken MODA reached 13.0 mm, and the total volume of the MODA formed per unit volume oil reached 389.7 µL/mL oil at the MPs concentration of 150 mg/L. Meanwhile, the results showed that the presence of MPs inhibited the oil dispersion by increasing the oil-water interfacial tension. The outcomes of this work may provide assistance in predicting the transport of spilled oil and developing emergency measures.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Microplásticos , Plásticos , Poluição por Petróleo/análise , Poluentes Químicos da Água/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...