Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 291: 118222, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34571464

RESUMO

Here, we investigated the characteristics of the environmental multimedia distribution of microcystins (MCs) introduced from freshwater discharge through the estuary dam of the Geum River. In addition, the applicability of a passive sampling device (polar organic chemical integrative sampler, POCIS) for monitoring MCs was evaluated. Surface water, suspended solids (SS), sediments, and oysters were collected from the inner and outer estuary dam. Seven MC variants were analyzed using HPLC-MS/MS. POCIS was deployed at three sites over one week, and MCs were monitored for four weeks from August to September 2019. Before POCIS was deployed in the field, compounds-specific sampling rates of MCs were determined as functions of water temperature (10, 20, and 30 °C), flow rate (0, 0.38, and 0.76 m s-1), and salinity (0, 15, and 30 psu) in the laboratory. The sampling rates of MCs in POCIS increased significantly with increasing water temperature and flow rate, whereas salinity did not significantly affect the sampling rates between freshwater and saltwater. The MCs in the Geum River Estuary mainly existed as particulate forms (mean: 78%), with relatively low proportions of dissolved forms (mean: 22%), indicating that MCs were mainly contained in cyanobacterial cells. There was no significant correlation among the concentrations of MCs in water, SS, sediments, and oysters. Time-weighted average concentrations of MCs from POCIS were not significantly correlated with the concentrations of MCs in water and oysters. The metabolites of MCs, including MC-LR-GSH, MC-LR-Cys, MC-RR-GSH, and MC-RR-Cys, were detected in oysters (no metabolites were detected in POCIS). Overall, POCIS can be useful for monitoring dissolved MCs in the aquatic ecosystem, particularly in calculating time-weighted average concentrations, but it seems to have limitations in evaluating the contamination status of total MCs, mainly in particulate form.


Assuntos
Geum , Microalgas , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Estuários , Água Doce , Microcistinas/análise , Multimídia , Rios , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 789: 147996, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062466

RESUMO

While the coastal pollution of persistent toxic substances (PTSs) has been widely documented, information on offshore environments remains limited. Here, we investigated the spatial distribution and sources of PTSs in the offshore sediments (n = 34) of South Korea. Sediment samples collected from the Yellow Sea (n = 18), the South Sea (n = 10), and the East Sea (n = 6), in 2017-18 were analyzed for a total of 71 PTSs. Target compounds include 31 PCBs, 15 PAHs, 9 emerging PAHs (e-PAHs), 10 styrene oligomers (SOs), and 6 alkylphenols (APs). Sedimentary PCBs showed relatively low concentrations with no significant difference across the three seas (0.16-6.9 ng g-1 normalized organic carbon, OC). Low-chlorinated PCBs (tri- and tetra Cl-CBs) were predominant (mean: 77%), primarily indicating atmospheric inputs. PAHs widely accumulated in the three seas with low to moderate level (22-250 ng g-1 OC), and dominated by high molecular weight PAHs (4-6 rings). PMF analysis revealed coast-specific PAHs sources; i.e., originated from mainly coke production (77%) in the Yellow Sea, vehicle emissions (68%) in the South Sea, and fossil fuel combustion (49%) in the East Sea. SOs showed significant contamination than other PTSs, with elevated concentrations in the Yellow Sea (mean: 350 ng g-1 OC). APs showed a similar regional distribution to SOs, but concentrations were much lower (mean: 17 ng g-1 OC). SOs and APs seemed to be introduced from rivers and estuaries on the west coast of Korea, where industrial and municipal activities are concentrated, then might be transported to offshore through tide or currents. Overall, the novel data presented for various PTSs in offshore Korean sediments warrant the necessity of a long-term monitoring effort and urgent management practice to protect marine ecosystem.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Oceanos e Mares , Hidrocarbonetos Policíclicos Aromáticos/análise , República da Coreia , Poluentes Químicos da Água/análise
3.
Mar Pollut Bull ; 160: 111560, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32841802

RESUMO

Contamination status of traditional and emerging persistent toxic substances (PTSs) in sediments and their major sources were investigated in Ulsan Bay, Korea. A total of 47 PTSs, including 15 traditional PAHs, ten styrene oligomers (SOs), six alkylphenols (APs), and 16 emerging PAHs (E-PAHs) were analyzed. Concentrations of traditional PAHs, SOs, and APs ranged from 35 to 1300 ng g-1 dry weight (dw), 30 to 3800 ng g-1 dw, and 30 to 430 ng g-1 dw, respectively. For the last 20 years, PTSs contamination in the bay area has been improved. However, 12 E-PAHs were widely detected in sediments, with a maximum of 240 ng g-1 dw (for benzo[e]pyrene) at the creek site. These E-PAHs seemed to originate from surrounding activities, such as biomass combustion, mobile sources, and diesel combustion. Due to environmental concerns for E-PAHs, further research on the potential toxicity, distribution, and behavior of these compounds should be implemented.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos/análise , República da Coreia , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 266(Pt 3): 115160, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32682185

RESUMO

Trophic magnification factor (TMF) of persistent toxic substances (PTSs: Hg, PCBs, PAHs, and styrene oligomers (SOs)) in a coastal food web (12 fish and four invertebrates) was determined in Ulsan Bay, South Korea. The nitrogen stable isotope ratios (δ15N) of amino acids [δ15NGlu-Phe based on glutamic acid (δ15NGlu) and phenylalanine (δ15NPhe)] were used to estimate the trophic position (TPGlu-Phe) of organisms. The TPGlu-Phe of organisms ranged from 1.64 to 3.69, which was lower than TP estimated by δ15N of bulk particulate organic matter (TPBulk: 2.46-4.21). Mercury and CB 138, 153, 187, and 180 were biomagnified through the whole food web (TMF > 1), while other PTSs, such as PAHs and SOs were not (biodilution of SOs firstly reported). In particular, the trophic transfer of PTSs was pronounced in the resident fish (e.g., rock bream, sea perch, Korean rockfish). Of note, CB 99, 101, 118, and 183 were additionally found to be biomagnifying PTSs in these species. Thus, fish residency appears to represent an important factor in determining the TMF of PTSs in the coastal environment. Overall, δ15NGlu-Phe provided accurate TPs of organisms and could be applied to determine the trophic transfer of PTSs in coastal food webs.


Assuntos
Cadeia Alimentar , Poluentes Químicos da Água/análise , Aminoácidos , Animais , Baías , Monitoramento Ambiental , Peixes , Nitrogênio/análise , Isótopos de Nitrogênio/análise , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...