Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 430: 128446, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35152105

RESUMO

Piezocatalysis driven by a gentle force possesses broad application prospects for degrading organic pollutants, sterilisation, wound healing and tissue recovery. The flexible and industrially scalable poly(vinylidene fluoride) (PVDF) film is commonly used in piezocatalysis. However, under gentle force action, PVDF composite-based piezocatalysis is poor. Herein, a flexible porous film based on poly(vinylidene fluoride)-hexafluoro propylene (PVDF-HFP) is enhanced with Fenton fillers (α-Fe2O3 nanoparticles). α-Fe2O3 nanoparticles improve the piezoelectric catalysis performance of PVDF-HFP by the ß-phase enhancement and provide Fe3+ to react with H2O2 generated by the piezoelectric film itself, leading to an additional Fenton reaction. Meanwhile, the Fe3+/Fe2+ cycle in the Fenton process accelerates under the piezoelectric field, promoting the Fenton reaction for 6.9% degradation improvement. The study on Fe2O3/PVDF-HFP porous film with the piezo-Fenton reaction under flowing water may help promote new piezocatalysis designs with high efficiency for self-powered environmental purification.


Assuntos
Peróxido de Hidrogênio , Polivinil , Polímeros de Fluorcarboneto , Porosidade , Água
2.
Nanomaterials (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443717

RESUMO

Optically transparent polyimide (PI) films with good dielectric properties and long-term sustainability in atomic-oxygen (AO) environments have been highly desired as antenna substrates in low earth orbit (LEO) aerospace applications. However, PI substrates with low dielectric constant (low-Dk), low dielectric dissipation factor (low-Df) and high AO resistance have rarely been reported due to the difficulties in achieving both high AO survivability and good dielectric parameters simultaneously. In the present work, an intrinsically low-Dk and low-Df optically transparent PI film matrix, poly[4,4'-(hexafluoroisopropylidene)diphthalic anhydride-co-2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane] (6FPI) was combined with a nanocage trisilanolphenyl polyhedral oligomeric silsesquioxane (TSP-POSS) additive in order to afford novel organic-inorganic nanocomposite films with enhanced AO-resistant properties and reduced dielectric parameters. The derived 6FPI/POSS films exhibited the Dk and Df values as low as 2.52 and 0.006 at the frequency of 1 MHz, respectively. Meanwhile, the composite films showed good AO resistance with the erosion yield as low as 4.0 × 10-25 cm3/atom at the exposure flux of 4.02 × 1020 atom/cm2, which decreased by nearly one order of magnitude compared with the value of 3.0 × 10-24 cm3/atom of the standard PI-ref Kapton® film.

3.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34443808

RESUMO

Polymeric nanofibrous membranes (NFMs) with both high whiteness and high thermal and ultraviolet (UV) stability are highly desired as reflectors for ultraviolet light-emitting diodes (UV-LEDs) devices. In the current work, a semi-alicyclic and fluoro-containing polyimide (PI) NFM with potential application in such kinds of circumstances was successfully fabricated from the organo-soluble PI resin solution via a one-step electrospinning procedure. In order to achieve the target, a semi-alicyclic PI resin was first designed and synthesized from an alicyclic dianhydride, 3,4-dicarboxy-1,2,3,4,5,6,7,8-decahydro-1-naphthalenesuccinic dianhydride (or hydrogenated tetralin dianhydride, HTDA), and a fluoro-containing diamine, 2,2-bis[4-(4-amino-phenoxy)phenyl]hexafluoropropane (BDAF), via an imidization procedure. The derived PI (HTDA-BDAF) resin possessed a number-average molecular weight (Mn) higher than 33,000 g/mol and was highly soluble in polar aprotic solvents, such as N,N-dimethylacetamide (DMAc). The electrospinning solution was prepared by dissolving the PI resin in DMAc at a solid content of 25-35 wt%. For comparison, the conventional high-whiteness polystyrene (PS) NFM was prepared according to a similar electrospinning procedure. The thermal and UV stability of the derived PI and PS NFMs were investigated by exposure under the UV-LED (wavelength: 365 nm) irradiation. Various thermal evaluation results indicated that the developed PI (HTDA-BDAF) NFM could maintain both the high reflectance and high whiteness at elevated temperatures. For example, after thermal treatment at 200 °C for 1 h in air, the PI (HTDA-BDAF) NFM exhibited a reflectance at a wavelength of 457 nm (R457) of 89.0%, which was comparable to that of the pristine PI NMF (R457 = 90.2%). The PI (HTDA-BDAF) NFM exhibited a whiteness index (WI) of 90.88, which was also close to that of the pristine sample (WI = 91.22). However, for the PS NFM counterpart, the R457 value decreased from the pristine 88.4% to 18.1% after thermal treatment at 150 °C for 1 h, and the sample became transparent. The PI NFM maintained good optical and mechanical properties during the high dose (2670 J/cm2) of UV exposure, while the properties of the PS NFM apparently deteriorated under the same UV aging.

4.
Nanomaterials (Basel) ; 11(6)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207676

RESUMO

High-temperature-resistant polymeric adhesives with high servicing temperatures and high adhesion strengths are highly desired in aerospace, aviation, microelectronic and other high-tech areas. The currently used high-temperature resistant polymeric adhesives, such as polyamic acid (PAA), are usually made from the high contents of solvents in the composition, which might cause adhesion failure due to the undesirable voids caused by the evaporation of the solvents. In the current work, electrospun preimidized polyimide (PI) nano-fibrous membranes (NFMs) were proposed to be used as solvent-free or solvent-less adhesives for stainless steel adhesion. In order to enhance the adhesion reliability of the PI NFMs, thermally crosslinkable phenylethynyl end-cappers were incorporated into the PIs derived from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and 3,3-bis[4-(4-aminophenoxy)phenyl]phthalide (BAPPT). The derived phenylethynyl-terminated PETI-10K and PETI-20K with the controlled molecular weights of 10,000 g mol-1 and 20,000 g mol-1, respectively, showed good solubility in polar aprotic solvents, such as N-methyl-2-pyrrolidinone (NMP) and N,N-dimethylacetamide (DMAc). The PI NFMs were successfully fabricated by electrospinning with the PETI/DMAc solutions. The ultrafine PETI NFMs showed the average fiber diameters (dav) of 627 nm for PETI-10K 695 nm for PETI-20K, respectively. The PETI NFMs showed good thermal resistance, which is reflected in the glass transition temperatures (Tgs) above 270 °C. The PETI NFMs exhibited excellent thermoplasticity at elevated temperatures. The stainless steel adherends were successfully adhered using the PETI NFMs as the adhesives. The PI NFMs provided good adhesion to the stainless steels with the single lap shear strengths (LSS) higher than 20.0 MPa either at room temperature (25 °C) or at an elevated temperature (200 °C).

5.
ACS Omega ; 6(28): 18458-18464, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34308077

RESUMO

This work describes polyimide (PI) ultrafine fibrous membranes (UFMs) with aligned fibrous structures, fabricated via the high-speed electrospinning procedure. Organo-soluble intrinsically photosensitive PI is utilized as the fiber-forming agent. The effects of different rotating speeds on the fiber morphology and properties are studied. The aligned UFMs possess hydrophobicity, favorable optical properties, and improved deformation durability. The extension strength of the UFMs reinforces obviously with the increased rotating speed and reaches the maximum of 9.18 MPa at 2500 rpm. In addition, due to the photo-cross-link nature of the PI resin, the UFMs present lithography capability, which can obtain micro-sized patterns on aluminum substrates, and even part of the fibrous structure was retained after development. This work shows promise in manufacturing fiber-based photolithographic hierarchical structures on flexible substrates, which exhibit potential in achieving multiple functions on fiber-based electronic devices.

6.
Nanomaterials (Basel) ; 11(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669852

RESUMO

The rapid development of advanced high-frequency mobile communication techniques has advanced urgent requirements for polymer materials with high-temperature resistance and good dielectric properties, including low dielectric constants (low-Dk) and low dielectric dissipation factors (low-Df). The relatively poor dielectric properties of common polymer candidates, such as standard polyimides (PIs) greatly limited their application in high-frequency areas. In the current work, benzoxazole units were successfully incorporated into the molecular structures of the fluoro-containing PIs to afford the poly(imide-benzoxazole) (PIBO) nano-fibrous membranes (NFMs) via electrospinning fabrication. First, the PI NFMs were prepared by the electrospinning procedure from organo-soluble PI resins derived from 2,2'-bis(3,4-dicarboxy-phenyl)hexafluoropropane dianhydride (6FDA) and aromatic diamines containing ortho-hydroxy-substituted benzamide units, including 2,2-bis[3-(4-aminobenzamide)-4-hydroxylphenyl]hexafluoropropane (p6FAHP) and 2,2-bis[3-(3-aminobenzamide)-4-hydroxyphenyl]hexafluoropropane (m6FAHP). Then, the PI NFMs were thermally dehydrated at 350 °C in nitrogen to afford the PIBO NFMs. The average fiber diameters (dav) for the PIBO NFMs were 1225 nm for PIBO-1 derived from PI-1 (6FDA-p6FAHP) precursor and 816 nm for PIBO-2 derived from PI-2 (6FDA-m6FAHP). The derived PIBO NFMs showed good thermal stability with the glass transition temperatures (Tgs) over 310 °C and the 5% weight loss temperatures (T5%) higher than 500 °C in nitrogen. The PIBO NFMs showed low dielectric features with the Dk value of 1.64 for PIBO-1 and 1.82 for PIBO-2 at the frequency of 1 MHz, respectively. The Df values were in the range of 0.010~0.018 for the PIBO NFMs.

7.
Polymers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265995

RESUMO

The relatively poor atomic-oxygen (AO) resistance of the standard polyimide (PI) films greatly limits the wide applications in low earth orbit (LEO) environments. The introduction of polyhedral oligomeric silsesquioxane (POSS) units into the molecular structures of the PI films has been proven to be an effective procedure for enhancing the AO resistance of the PI films. In the current work, a series of POSS-substituted poly (pyromellitic anhydride-4,4'-oxydianiline) (PMDA-ODA) films (POSS-PI) with different POSS contents were synthesized via a POSS-containing diamine, N-[(heptaisobutyl-POSS)propyl]-3,5-diaminobenzamide (DABA-POSS). Subsequently, the effects of the molecular structures on the thermal, tensile, optical, and especially the AO-erosion behaviors of the POSS-PI films were investigated. The incorporation of the latent POSS substituents decreased the thermal stability and the high-temperature dimensional stability of the pristine PI-0 (PMDA-ODA) film. For instance, the PI-30 film with the DABA-POSS content of 30 wt% in the film exhibited a 5% weight loss temperature (T5%) of 512 °C and a coefficient of linear thermal expansion (CTE) of 54.6 × 10-6/K in the temperature range of 50-250 °C, respectively, which were all inferior to those of the PI-0 film (T5% = 574 °C; CTE = 28.9 × 10-6/K). In addition, the tensile properties of the POSS-containing PI films were also deteriorated, to some extent, due to the incorporation of the DABA-POSS components. The tensile strength (TS) of the POSS-PI films decreased with the order of PI-0 > PI-10 > PI-15 > PI-20 > PI-25 > PI-30, and so did the tensile modulus (TM) and the elongations at break (Eb). PI-30 showed the TS, TM, and Eb values of 75.0 MPa, 1.55 GPa, and 16.1%, respectively, which were all lower than those of the PI-0 film (TS = 131.0 MPa, TM = 1.88 GPa, Eb = 73.2%). Nevertheless, the incorporation of POSS components obviously increased the AO resistance of the PI films. All of the POSS-PI films survived from the AO exposure with the total fluence of 2.16 × 1021 atoms/cm2, while PI-0 was totally eroded under the same circumstance. The PI-30 film showed an AO erosion yield (Es) of 1.1 × 10-25 cm3/atom, which was approximately 3.67% of the PI-0 film (Es = 3.0 × 10-24 cm3/atom). Inert silica or silicate passivation layers were detected on the surface of the POSS-PI films after AO exposure, which efficiently prevented the further erosion of the under-layer materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...