Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 2): 128329, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000605

RESUMO

In recent years, biopolymer aerogels as thermal insulation materials have received widespread attention due to natural abundance, cost-efficiency, and environment-friendly. However, the flammability and low strength hinder its practical application. Hollow glass microspheres (HGMs) as an inorganic thermal insulation filler have been filled in biopolymer aerogels to improve flame retardancy. However, the structure formed by HGMs embedded porous network of biopolymer aerogel has rarely been investigated, which not only reduce thermal conductivity through high porosity, but also adjust the filling volume of HGMs and achieve uniform distribution through chemical cross-linking. Herein, a biopolymer aerogel composite was assembled by chitosan aerogel (CSA) and different volume of HGMs by chemical cross-linking, freeze-drying, and silylation modification processes. When the filling volume fraction of HGMs reached 40 %, a skeleton structure was initially formed. The composites with HGMs volume of 40 %-60 % exhibited low density, high porosity, low thermal conductivity, good mechanical property, and excellent flame retardancy. According to GB 8624-2012 standard for classification, the composite with 60 % HGMs achieved class A1 non-combustible.


Assuntos
Quitosana , Retardadores de Chama , Microesferas , Porosidade , Excipientes
2.
Small ; 19(4): e2205735, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437051

RESUMO

The construction of hollow metallic microspheres with rationally designed building blocks of the metal shell is a promising way to achieve low density and functionality control, but the microengineering of the metallic structures on a micrometer spherical surface is a great challenge. In the present work, a novel and simple calcination-induced aggregation strategy is developed to realize the distribution status and microstructure control of Co-Cu bimetal building blocks assembled on a hollow glass microsphere support, and thus a series of low-density (0.58 g cm-3 ) dual shell composite hollow microspheres are constructed with gradient in electromagnetic property depending on the calcination temperature (CT). The optimized microwave shielding performance can be achieved at a CT of 500 °C, while further increasing CT to 700 °C leads to an interesting conversion from microwave shielding to absorption with an optimized effective absorption bandwidth of 4.64 GHz at a low matching thickness of 1.33 mm. The mechanism underlying the CT-dependent metallic shell structure variation and further the decisive effect of the shell structure on the microwave response behavior are proposed based on a series of contrast experiments.

3.
RSC Adv ; 10(58): 35287-35294, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515694

RESUMO

An efficient seed induced direct assembly route is designed for the controlled synthesis of hollow microsphere supported catalysts (HMSCs) with nickel alloy as the active material. The inherent magnetic response of nickel alloy endows HMSCs magnetic separability, and the hollow interior of the support opens a new avenue for self-floating separation. It is found that the introduction of P and Co contributes largely to the improvement of the catalytic performance of the products, which may attributed to synergistic effects and electron transfer. Moreover, the loading amounts of alloy nanoparticles can be easily tailored through properly monitoring the reaction conditions. With the optimized loading of 2.68 wt%, the k N of HMSC-NiCoP-2.68 wt% reaches 14.0 s-1 g-1 for the catalytic reduction of p-nitrophenol (4-NP), which is higher than commercial 5 wt% Pd/C of 11.6 s-1 g-1 under the same conditions. This work provides additional insights into preparation and property control of an easily separable supported non-noble metal catalyst, which holds potential to be extended to the preparation and property control of other metal nanocatalysts on various supports.

4.
Dalton Trans ; 45(7): 2881-7, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26726765

RESUMO

Silica-nickel-carbon composite microspheres with shelly hollow structures and tunable electromagnetic properties were prepared in large scale through a three-step route. Micron-sized precursor microspheres were prepared firstly by spray drying of water glass. Then a subsequent acid leaching with diluted hydrochloric acid was carried out to eliminate the Na2O in the precursor microspheres to get single shell silica hollow microspheres (SHMs). Afterwards, Ni-C composite shells were assembled on the surface of the previously formed SHMs through a calcination route in an inert atmosphere to form silica-nickel-carbon composite shelly hollow microspheres (CSHMs) through decomposition of the reactants and carbon thermal reduction. By properly tuning the calcination conditions, silica-nickel CSHMs with gradients in composition can also be prepared. The electromagnetic properties of the CSHMs were studied and the results demonstrate that they present ferromagnetic and microwave absorbing properties related to the shell composition. The DSHPs thus obtained may have some promising applications in the fields of low-density magnetic materials and microwave absorbers. This work provides a new strategy to fabricate shelly hollow particles, which can be expected to be extended to the controlled preparation of similar structures with various compositions.

5.
ACS Appl Mater Interfaces ; 5(3): 989-96, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23281871

RESUMO

Low density (0.55-0.92g/mL, depending on the shell thickness and composition) glass-metal-metal triplex-shell hollow particles (TSHP) were prepared by a three-step route. First, micrometer-sized silicate glass particles with hollow cores, uniform shells, and high sphericity were prepared through spray drying and subsequent melting. NiP shell was uniformly assembled to the previously obtained glass hollow particles by silver seed induced chemical reduction of Ni(2+) by sodium hypophosphite, and glass-NiP double-shell hollow particles (DSHP) with compact and uniform shells were formed. The as-formed NiP particles further acted as the seeds for the directed formation and assembly of the CoFeP shell on the NiP shell to form the final glass-NiP-CoFeP triplex-shell hollow particles (TSHP). The influences of the component of the reaction system on the composition, structure, and magnetic properties of the hollow particles were studied. The multishell hollow particles thus obtained may have some promising applications in the fields of low-density magnetic materials, conduction, microwave absorbers, catalysis, etc. This work provides an additional strategy to fabricate multishell structured hollow particles with tailored shell composition and magnetic properties, which can be extended to the controlled preparation of multishell composite particles with the shells consisting of metal, oxides, or other compounds.

6.
Dalton Trans ; 39(14): 3378-83, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20379530

RESUMO

Novel 3D urchin-like glass/Ni-Ni(3)P/Co(2)P(2)O(7) core/shell/shell composite hollow structures are fabricated for the first time by controlled stepwise assembly of granular Ni-Ni(3)P alloy and ribbon-like Co(2)P(2)O(7) nanocrystals on hollow glass spheres in aqueous solutions at mild conditions. It is found that the shell structure and the overall morphology of the products can be tailored by properly tuning the annealing temperature. The as-obtained composite core/shell/shell products possess low density (ca. 1.18 g cm(-3)) and shape-dependent magnetic and microwave absorbing properties, and thus may have some promising applications in the fields of low-density magnetic materials, microwave absorbers, etc. Based on a series of contrast experiments, the probable formation mechanism of the core/shell/shell hierarchical structures is proposed. This work provides an additional strategy to prepare core/shell composite spheres with tailored shell morphology and electromagnetic properties.

7.
Dalton Trans ; (19): 3664-7, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19417929

RESUMO

Novel glass/Fe3O4 core/shell composite hollow spheres with the shell layer assembled by multi-layered wafers were successfully synthesized by reduction of a glass/alpha-Fe2O3 precursor, which was obtained through a facile solvothermal process. The effects of some reaction parameters on the morphology of the shell layers and the magnetic properties of the products were investigated.

8.
Dalton Trans ; (38): 5155-8, 2008 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-18813368

RESUMO

Novel urchin-like core/shell composite hollow spheres were fabricated by assembly of nickel nanocones on the surface of hollow glass spheres; the effects of some reaction parameters on the morphology of the shell layers and the room temperature magnetic properties of the products were investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...