Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272915

RESUMO

ObjectiveTo determine how the severity of successively dominant SARS-CoV-2 variants changed over the course of the COVID-19 pandemic. DesignRetrospective cohort analysis. SettingCommunity- and hospital-sequenced COVID-19 cases in the NHS Greater Glasgow and Clyde (NHS GG&C) Health Board. ParticipantsAll sequenced non-nosocomial adult COVID-19 cases in NHS GG&C infected with the relevant SARS-CoV-2 lineages during analysis periods. B.1.177/Alpha: 1st November 2020 - 30th January 2021 (n = 1640). Alpha/Delta: 1st April - 30th June 2021 (n = 5552). AY.4.2 Delta/non-AY.4.2 Delta: 1st July - 31st October 2021 (n = 9613). Non-AY.4.2 Delta/Omicron: 1st - 31st December 2021 (n = 3858). Main outcome measuresAdmission to hospital, ICU, or death within 28 days of positive COVID-19 test ResultsFor B.1.177/Alpha, 300 of 807 B.1.177 cases were recorded as hospitalised or worse, compared to 232 of 833 Alpha cases. After adjustment, the cumulative odds ratio was 1.51 (95% CI: 1.08-2.11) for Alpha versus B.1.177. For Alpha/Delta, 113 of 2104 Alpha cases were recorded as hospitalised or worse, compared to 230 of 3448 Delta cases. After adjustment, the cumulative odds ratio was 2.09 (95% CI: 1.42-3.08) for Delta versus Alpha. For non-AY.4.2 Delta/AY.4.2 Delta, 845 of 8644 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 101 of 969 AY.4.2 Delta cases. After adjustment, the cumulative odds ratio was 0.99 (95% CI: 0.76-1.27) for AY.4.2 Delta versus non-AY.4.2 Delta. For non-AY.4.2 Delta/Omicron, 30 of 1164 non-AY.4.2 Delta cases were recorded as hospitalised or worse, compared to 26 of 2694 Omicron cases. After adjustment, the median cumulative odds ratio was 0.49 (95% CI: 0.22-1.06) for Omicron versus non-AY.4.2 Delta. ConclusionsThe direction of change in disease severity between successively emerging SARS-CoV-2 variants of concern was inconsistent. This heterogeneity demonstrates that severity associated with future SARS-CoV-2 variants is unpredictable.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268111

RESUMO

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron, the fifth VOC to be described, harbours 30 amino acid mutations in spike including 15 in the receptor-binding domain. Here, we demonstrate substantial evasion of neutralisation by Omicron in vitro using sera from vaccinated individuals. Importantly, these data are mirrored by a substantial reduction in real-world vaccine effectiveness that is partially restored by booster vaccination. We also demonstrate that Omicron does not induce cell syncytia and favours a TMPRSS2-independent endosomal entry pathway. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260128

RESUMO

ObjectivesThe SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. MethodsIn this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. ResultsOur cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus non-Alpha variant). ConclusionsThe Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259107

RESUMO

BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineage B.1.1.7 has been associated with an increased rate of transmission and disease severity among subjects testing positive in the community. Its impact on hospitalised patients is less well documented. MethodsWe collected viral sequences and clinical data of patients admitted with SARS-CoV-2 and hospital-onset COVID-19 infections (HOCIs), sampled 16/11/2020 - 10/01/2021, from eight hospitals participating in the COG-UK-HOCI study. Associations between the variant and the outcomes of all-cause mortality and intensive therapy unit (ITU) admission were evaluated using mixed effects Cox models adjusted by age, sex, comorbidities, care home residence, pregnancy and ethnicity. ResultsSequences were obtained from 2341 inpatients (HOCI cases = 786) and analysis of clinical outcomes was carried out in 2147 inpatients with all data available. The hazard ratio (HR) for mortality of B.1.1.7 compared to other lineages was 1.01 (95% CI 0.79-1.28, P=0.94) and for ITU admission was 1.01 (95% CI 0.75-1.37, P=0.96). Analysis of sex-specific effects of B.1.1.7 identified increased risk of mortality (HR 1.30, 95% CI 0.95-1.78) and ITU admission (HR 1.82, 95% CI 1.15-2.90) in females infected with the variant but not males (mortality HR 0.82, 95% CI 0.61-1.10; ITU HR 0.74, 95% CI 0.52-1.04). ConclusionsIn common with smaller studies of patients hospitalised with SARS-CoV-2 we did not find an overall increase in mortality or ITU admission associated with B.1.1.7 compared to other lineages. However, women with B.1.1.7 may be at an increased risk of admission to intensive care and at modestly increased risk of mortality.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253587

RESUMO

ObjectivesPatients requiring haemodialysis are at increased risk of serious illness with SARS-CoV-2 infection. To improve the understanding of transmission risks in six Scottish renal dialysis units, we utilised the rapid whole-genome sequencing data generated by the COG-UK consortium. MethodsWe combined geographical, temporal and genomic sequence data from the community and hospital to estimate the probability of infection originating from within the dialysis unit, the hospital or the community using Bayesian statistical modelling and compared these results to the details of epidemiological investigations. ResultsOf 671 patients, 60 (8.9%) became infected with SARS-CoV-2, of whom 16 (27%) died. Within-unit and community transmission were both evident and an instance of transmission from the wider hospital setting was also demonstrated. ConclusionsNear-real-time SARS-CoV-2 sequencing data can facilitate tailored infection prevention and control measures, which can be targeted at reducing risk in these settings.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429199

RESUMO

Remdesivir (RDV) is used widely for COVID-19 patients despite varying results in recent clinical trials. Here, we show how serially passaging SARS-CoV-2 in vitro in the presence of RDV selected for drug-resistant viral populations. We determined that the E802D mutation in the RNA-dependent RNA polymerase was sufficient to confer decreased RDV sensitivity without affecting viral fitness. Analysis of more than 200,000 sequences of globally circulating SARS-CoV-2 variants show no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we also observed changes in the Spike (i.e., H69 E484, N501, H655) corresponding to mutations identified in emerging SARS-CoV-2 variants indicating that they can arise in vitro in the absence of immune selection. This study illustrates SARS-CoV-2 genome plasticity and offers new perspectives on surveillance of viral variants. One Sentence SummarySARS-CoV-2 drug resistance & genome plasticity

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248677

RESUMO

The second SARS virus, SARS-CoV-2, emerged in December 2019, and within a month was globally distributed. It was first introduced into Scotland in February 2020 associated with returning travellers and visitors. By March it was circulating in communities across the UK, and to control COVID-19 cases, and prevent overwhelming of the National Health Service (NHS), a lockdown was introduced on 23rd March 2020 with a restriction of peoples movements. To augment the public health efforts a large-scale genome epidemiology effort (as part of the COVID-19 Genomics UK (COG-UK) consortium) resulted in the sequencing of over 5000 SARS-CoV-2 genomes by 18th August 2020 from Scottish cases, about a quarter of the estimated number of cases at that time. Here we quantify the geographical origins of the first wave introductions into Scotland from abroad and other UK regions, the spread of these SARS-CoV-2 lineages to different regions within Scotland (defined at the level of NHS Health Board) and the effect of lockdown on virus success. We estimate that approximately 300 introductions seeded lineages in Scotland, with around 25% of these lineages composed of more than five viruses, but by June circulating lineages were reduced to low levels, in line with low numbers of recorded positive cases. Lockdown was, thus, associated with a dramatic reduction in infection numbers and the extinguishing of most virus lineages. Unfortunately since the summer cases have been rising in Scotland in a second wave, with >1000 people testing positive on a daily basis, and hospitalisation of COVID-19 cases on the rise again. Examining the available Scottish genome data from the second wave, and comparing it to the first wave, we find that while some UK lineages have persisted through the summer, the majority of lineages responsible for the second wave are new introductions from outside of Scotland and many from outside of the UK. This indicates that, while lockdown in Scotland is directly linked with the first wave case numbers being brought under control, travel-associated imports (mostly from Europe or other parts of the UK) following the easing of lockdown are responsible for seeding the current epidemic population. This demonstrates that the impact of stringent public health measures can be compromised if following this, movements from regions of high to low prevalence are not minimised.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-355842

RESUMO

SARS-CoV-2 can mutate to evade immunity, with consequences for the efficacy of emerging vaccines and antibody therapeutics. Herein we demonstrate that the immunodominant SARS-CoV-2 spike (S) receptor binding motif (RBM) is the most divergent region of S, and provide epidemiological, clinical, and molecular characterization of a prevalent RBM variant, N439K. We demonstrate that N439K S protein has enhanced binding affinity to the hACE2 receptor, and that N439K virus has similar clinical outcomes and in vitro replication fitness as compared to wild- type. We observed that the N439K mutation resulted in immune escape from a panel of neutralizing monoclonal antibodies, including one in clinical trials, as well as from polyclonal sera from a sizeable fraction of persons recovered from infection. Immune evasion mutations that maintain virulence and fitness such as N439K can emerge within SARS-CoV-2 S, highlighting the need for ongoing molecular surveillance to guide development and usage of vaccines and therapeutics.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20166082

RESUMO

Global dispersal and increasing frequency of the SARS-CoV-2 Spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of Spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-181867

RESUMO

We have developed periscope, a tool for the detection and quantification of sub-genomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "sub-genomic RNAs". sgRNAs are produced through discontinuous transcription which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L which is located in the 5 UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5 end of all sgRNA. We applied periscope to 1,155 SARS-CoV-2 genomes from Sheffield, UK and validated our findings using orthogonal datasets and in vitro cell systems. Using a simple local alignment to detect reads which contain the leader sequence we were able to identify and quantify reads arising from canonical and non-canonical sgRNA. We were able to detect all canonical sgRNAs at expected abundances, with the exception of ORF10. A number of recurrent non-canonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing datasets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20124834

RESUMO

SARS-CoV-2, the causative agent of COVID-19, emerged in Wuhan, China in December 2019 and spread rapidly throughout the world. Understanding the introductions of this new coronavirus in different settings may assist control efforts and the establishment of frameworks to support rapid response in future infectious disease outbreaks. We investigated the first four weeks of emergence of the SARS-CoV-2 virus in Scotland after the first case reported on the 1st March 2020. We obtained full genome sequences from 452 individuals with a laboratory-confirmed diagnosis of COVID-19, representing 20% of all cases until 1st April 2020 (n=2310). This permitted a genomic epidemiology approach to study the introductions and spread of the SARS-2 virus in Scotland. From combined phylogenetic and epidemiological analysis, we estimated at least 113 introductions of SARS-CoV-2 into Scotland during this period. Clusters containing multiple sequences suggestive of onward transmission occurred in 48/86 (56%). 42/86 (51%) clusters had no known international travel history indicating undetected introductions. The majority of viral sequences were most closely related to those circulating in other European countries, including Italy, Austria and Spain. Travel-associated introductions of SARS-CoV-2 into Scotland predated travel restrictions in the UK and other European countries. The first local transmission occurred three days after the first case. A shift from travel-associated to sustained community transmission was apparent after only 11 days. Undetected introductions occurred prior to the first known case of COVID-19. Earlier travel restrictions and quarantine measures might have resulted in fewer introductions into Scotland, thereby reducing the number of cases and the subsequent burden on health services. The high number of introductions and transmission rates were likely to have impacted on national contact tracing efforts. Our results also demonstrate that local real-time genomic epidemiology can be used to monitor transmission clusters and facilitate control efforts to restrict the spread of COVID-19. FundingMRC (MC UU 1201412), UKRI/Wellcome (COG-UK), Wellcome Trust Collaborator Award (206298/Z/17/Z - ARTIC Network; TCW Wellcome Trust Award 204802/Z/16/Z Research in contextO_ST_ABSEvidence before this studyC_ST_ABSCoronavirus disease-2019 (COVID-19) was first diagnosed in Scotland on the 1st of March 2020 following the emergence of the causative severe acute respiratory system coronavirus 2 (SARS-CoV-2) virus in China in December 2019. During the first month of the outbreak in Scotland, 2310 positive cases of COVID-19 were detected, associated with 1832 hospital admissions, 207 intensive care admissions and 126 deaths. The number of introductions into Scotland and the source of those introductions was not known prior to this study. Added value of this studyUsing a combined phylogenetic and epidemiological approach following real-time next generation sequencing of 452 SARS-CoV-2 samples, it was estimated that the virus was introduced to Scotland on at least 113 occasions, mostly from other European countries, including Italy, Austria and Spain. Localised outbreaks occurred in the community across multiple Scottish health boards, within healthcare facilities and an international conference and community transmission was established rapidly, before local and international lockdown measures were introduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...