Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15716-15728, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38847339

RESUMO

Epitaxial graphene/ferromagnetic metal (Gr/FM) heterostructures deposited onto heavy metals have been proposed for the realization of spintronic devices because of their perpendicular magnetic anisotropy and sizable Dzyaloshinskii-Moriya interaction (DMI), allowing for both enhanced thermal stability and stabilization of chiral spin textures. However, establishing routes toward this goal requires the fundamental understanding of the microscopic origin of their unusual properties. Here, we elucidate the nature of the induced spin-orbit coupling (SOC) at Gr/Co interfaces on Ir. Through spin- and angle-resolved photoemission spectroscopy along with density functional theory, we show that the interaction of the heavy metals with the Gr layer via hybridization with the FM is the source of strong SOC in the Gr layer. Furthermore, our studies on ultrathin Co films underneath Gr reveal an energy splitting of ∼100 meV for in-plane and negligible for out-of-plane spin polarized Gr π-bands, consistent with a Rashba-SOC at the Gr/Co interface, which is either the fingerprint or the origin of the DMI. This mechanism vanishes at large Co thicknesses, where neither in-plane nor out-of-plane spin-orbit splitting is observed, indicating that Gr π-states are electronically decoupled from the heavy metal. The present findings are important for future applications of Gr-based heterostructures in spintronic devices.

2.
ACS Appl Mater Interfaces ; 15(13): 16963-16974, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951382

RESUMO

While technologically challenging, the integration of ferroelectric thin films with graphene spintronics potentially allows the realization of highly efficient, electrically tunable, nonvolatile memories through control of the interfacial spin-orbit driven interaction occurring at graphene/Co interfaces deposited on heavy metal supports. Here, the integration of ferroelectric Hf0.5Zr0.5O2 on graphene/Co/heavy metal epitaxial stacks is investigated via the implementation of several nucleation methods in atomic layer deposition. By employing in situ Al2O3 as a nucleation layer sandwiched between Hf0.5Zr0.5O2 and graphene, the Hf0.5Zr0.5O2 demonstrates a remanent polarization (2Pr) of 19.2 µC/cm2. Using an ex situ, naturally oxidized sputtered Ta layer for nucleation, we could control 2Pr via the interlayer thickness, reaching maximum values of 28 µC/cm2 with low coercive fields. Magnetic hysteresis measurements taken before and after atomic layer deposition show strong perpendicular magnetic anisotropy, with minimal deviations in the magnetization reversal pathways due to the Hf0.5Zr0.5O2 deposition process, thus pointing to a good preservation of the magnetic stack including single-layer graphene. X-ray diffraction measurements further confirm that the high-quality interfaces demonstrated in the stack remain unperturbed by the ferroelectric deposition and anneal. The proposed graphene-based ferroelectric/magnetic structures offer the strong advantages of ferroelectricity and ferromagnetism at room temperature, enabling the development of novel magneto-electric and nonvolatile in-memory spin-orbit logic architectures with low power switching.

3.
ACS Appl Mater Interfaces ; 12(3): 4088-4096, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31875389

RESUMO

The development of graphene (Gr) spintronics requires the ability to engineer epitaxial Gr heterostructures with interfaces of high quality, in which the intrinsic properties of Gr are modified through proximity with a ferromagnet to allow for efficient room temperature spin manipulation or the stabilization of new magnetic textures. These heterostructures can be prepared in a controlled way by intercalation through graphene of different metals. Using photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM), we achieve a nanoscale control of thermally activated intercalation of a homogeneous ferromagnetic (FM) layer underneath epitaxial Gr grown onto (111)-oriented heavy metal (HM) buffers deposited, in turn, onto insulating oxide surfaces. XPS and STM demonstrate that Co atoms evaporated on top of Gr arrange in 3D clusters and, upon thermal annealing, penetrate through and diffuse below Gr in a 2D fashion. The complete intercalation of the metal occurs at specific temperatures, depending on the type of metallic buffer. The activation energy and the optimum temperature for the intercalation processes are determined. We describe a reliable method to fabricate and characterize in situ high-quality Gr-FM/HM heterostructures, enabling the realization of novel spin-orbitronic devices that exploit the extraordinary properties of Gr.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...