Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38479813

RESUMO

OBJECTIVES: Myositis-specific and associated autoantibodies are important biomarkers in routine clinical use. We assessed local testing performance for myositis autoantibodies by comparing line immunoassay (LIA) to protein radio-immunoprecipitation and identifying clinical characteristics associated with each myositis autoantibody in the MyoCite cohort. METHODS: Serum samples from patients within the MyoCite cohort, a well-characterised retro-prospective dataset of adult and juvenile idiopathic inflammatory myopathy (IIM) patients in Lucknow, India (2017-2020), underwent LIA at Sanjay Gandhi Postgraduate Institute of Medical Science (SGPGIMS), Lucknow. Immunoprecipitation of 147 IIM patient serum samples (125 adult-onset, 22 juvenile-onset) was conducted at the University of Bath, with researchers blind to LIA results. LIA performance was assessed against Immunoprecipitation as the reference standard, measuring sensitivity, specificity, and inter-rater agreement. Univariate and multivariate logistic regression determined clinical associations for specific MSA. RESULTS: Immunoprecipitation identified myositis autoantibodies in 56.5% (n = 83) of patient samples, with anti-Jo1 (n = 16; 10.9%) as the most common, followed by anti-MDA5 (n = 14, 9.5%). While LIA showed good agreement for anti-Jo1, anti-PL7 and anti-PL12 (Cohen's κ 0.79, 0.83, and 1, respectively), poor agreement was observed in other subgroups, notably anti-TIF1γ (Cohen's κ 0.21). Strongly positive samples, especially in myositis-specific autoantibodies, correlated more with immunoprecipitation results. Overall, 59 (40.1%) samples exhibited non-congruence on LIA and Immunoprecipitation, and κ values for LIA's for anti-TIF1γ, anti-Ku, anti-PmScl, anti-Mi2, and anti-SAE ranged between 0.21-0.60. CONCLUSION: While LIA reliably detected anti-Jo1, anti-PL7, anti-PL12, anti-MDA5, and anti-NXP-2, it also displayed false positives and negatives. Its effectiveness in detecting other autoantibodies, such as anti-TIF1γ, was poor.

2.
Comp Funct Genomics ; 2012: 258284, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666085

RESUMO

Takifugu rubripes is teleost fish widely used in comparative genomics to understand the human system better due to its similarities both in number of genes and structure of genes. In this work we survey the fugu genome, and, using sensitive computational approaches, we identify the repertoire of putative protein kinases and classify them into groups and subfamilies. The fugu genome encodes 519 protein kinase-like sequences and this number of putative protein kinases is comparable closely to that of human. However, in spite of its similarities to human kinases at the group level, there are differences at the subfamily level as noted in the case of KIS and DYRK subfamilies which contribute to differences which are specific to the adaptation of the organism. Also, certain unique domain combination of galectin domain and YkA domain suggests alternate mechanisms for immune response and binding to lipoproteins. Lastly, an overall similarity with the MAPK pathway of humans suggests its importance to understand signaling mechanisms in humans. Overall the fugu serves as a good model organism to understand roles of human kinases as far as kinases such as LRRK and IRAK and their associated pathways are concerned.

3.
Comp Funct Genomics ; : 365637, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19809514

RESUMO

Protein Kinase-Like Non-kinases (PKLNKs), which are closely related to protein kinases, lack the crucial catalytic aspartate in the catalytic loop, and hence cannot function as protein kinase, have been analysed. Using various sensitive sequence analysis methods, we have recognized 82 PKLNKs from four higher eukaryotic organisms, namely, Homo sapiens, Mus musculus, Rattus norvegicus, and Drosophila melanogaster. On the basis of their domain combination and function, PKLNKs have been classified mainly into four categories: (1) Ligand binding PKLNKs, (2) PKLNKs with extracellular protein-protein interaction domain, (3) PKLNKs involved in dimerization, and (4) PKLNKs with cytoplasmic protein-protein interaction module. While members of the first two classes of PKLNKs have transmembrane domain tethered to the PKLNK domain, members of the other two classes of PKLNKs are cytoplasmic in nature. The current classification scheme hopes to provide a convenient framework to classify the PKLNKs from other eukaryotes which would be helpful in deciphering their roles in cellular processes.

4.
Proteins ; 71(2): 995-1006, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18004777

RESUMO

Protein kinases play important roles in almost all major signaling and regulatory pathways of eukaryotic organisms. Members in the family of protein kinases make up a substantial fraction of eukaryotic proteome. Analysis of the protein kinase repertoire (kinome) would help in the better understanding of the regulatory processes. In this article, we report the identification and analysis of the repertoire of protein kinases in the intracellular parasite Entamoeba histolytica. Using a combination of various sensitive sequence search methods and manual analysis, we have identified a set of 307 protein kinases in E. histolytica genome. We have classified these protein kinases into different subfamilies originally defined by Hanks and Hunter and studied these kinases further in the context of noncatalytic domains that are tethered to catalytic kinase domain. Compared to other eukaryotic organisms, protein kinases from E. histolytica vary in terms of their domain organization and displays features that may have a bearing in the unusual biology of this organism. Some of the parasitic kinases show high sequence similarity in the catalytic domain region with calmodulin/calcium dependent protein kinase subfamily. However, they are unlikely to act like typical calcium/calmodulin dependent kinases as they lack noncatalytic domains characteristic of such kinases in other organisms. Such kinases form the largest subfamily of kinases in E. histolytica. Interestingly, a PKA/PKG-like subfamily member is tethered to pleckstrin homology domain. Although potential cyclins and cyclin-dependent kinases could be identified in the genome the likely absence of other cell cycle proteins suggests unusual nature of cell cycle in E. histolytica. Some of the unusual features recognized in our analysis include the absence of MEK as a part of the Mitogen Activated Kinase signaling pathway and identification of transmembrane region containing Src kinase-like kinases. Sequences which could not be classified into known subfamilies of protein kinases have unusual domain architectures. Many such unclassified protein kinases are tethered to domains which are Cysteine-rich and to domains known to be involved in protein-protein interactions. Our kinome analysis of E. histolytica suggests that the organism possesses a complex protein phosphorylation network that involves many unusual kinases.


Assuntos
Entamoeba histolytica/enzimologia , Entamoeba histolytica/genética , Genoma de Protozoário , Proteínas Quinases/genética , Animais , Quinases Ciclina-Dependentes/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética
5.
J Biosci ; 32(5): 921-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17914234

RESUMO

Protein structural alignments are generally considered as 'golden standard' for the alignment at the level of amino acid residues. In this study we have compared the quality of pairwise and multiple structural alignments of about 5900 homologous proteins from 718 families of known 3-D structures. We observe shifts in the alignment of regular secondary structural elements (helices and strands) between pairwise and multiple structural alignments. The differences between pairwise and multiple structural alignments within helical and beta-strand regions often correspond to 4 and 2 residue positions respectively. Such shifts correspond approximately to "one turn" of these regular secondary structures. We have performed manual analysis explicitly on the family of protein kinases. We note shifts of one or two turns in helix-helix alignments obtained using pairwise and multiple structural alignments. Investigations on the quality of the equivalent helix-helix, strand-strand pairs in terms of their residue side-chain accessibilities have been made. Our results indicate that the quality of the pairwise alignments is comparable to that of the multiple structural alignments and, in fact, is often better. We propose that pairwise alignment of protein structures should also be used in formulation of methods for structure prediction and evolutionary analysis.


Assuntos
Proteínas Quinases/química , Homologia Estrutural de Proteína , Proteínas Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência/métodos
6.
Protein Pept Lett ; 14(6): 509-17, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17627589

RESUMO

Phosphorylation by protein kinases is a very common and crucial process in many signal transduction pathways in eukaryotes. This review describes comparative protein kinase analysis of two apicomplexa Plasmodium falciparum (3D7 strain) and Plasmodium yoelii yoelii (17XNL strain) which are causative agents of malaria in human and African rat respectively. Sensitive bioinformatics techniques enable identification of 82 and 60 putative protein kinases in P. falciparum and P. yoelii yoelii respectively and these sequences could be classified into known subfamilies of protein kinases. The most populated kinase subfamilies in both the plasmodium species correspond to CAMK and CMGC groups. Analysis of domain architectures enables detection of uncommon domain organization in kinases of both the organisms such as kinase domain tethered to EF hands as well as PH domain. Components of MAPK signaling pathway is not well conserved in plasmodium organisms. Such observations suggest that plasmodium protein kinases are highly divergent from other eukaryotes. A transmembrane kinase with 6 membrane spanning segments in P. falciparum seems to have no orthologue in P. yoelii yoelii. 19 P. falciparum kinases have been found to cluster separately from P. yoelii yoelii kinases and hence these kinases are unique to P. falciparum genome. Only 28 orthologous pairs of kinases seem to be present between these two plasmodium organisms. Comparative kinome analysis of two plasmodium species has thus provided clues to the function of many protein kinases based upon their classification and domain organization and also implicate marked differences even between two plasmodium organisms.


Assuntos
Plasmodium falciparum/enzimologia , Plasmodium yoelii/enzimologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Subunidades Proteicas/metabolismo , Animais , Genoma de Protozoário , Fosforilação , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium yoelii/genética , Plasmodium yoelii/metabolismo , Proteínas Quinases/química , Subunidades Proteicas/química , Subunidades Proteicas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...