Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Microbiol ; 65(7): 510-521, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30901528

RESUMO

Microbial communities drive geochemical cycles in soils. Relatively few studies have assessed the long-term impacts of different types of soil amendments under field conditions in long-term experiments. The response of soil microbial organisms in a Mollisol cultivated with maize for 35 years was examined. Treatments involved the use of N, P, and K fertilizers and two doses of straw residue in isolation or combined. Real-time PCR and Illumina MiSeq sequencing methods were used to characterize the microbial community. The results showed that addition of nitrogen fertilizers decreased soil pH, but this was mitigated when a high dose of straw was also incorporated. Long-term application of inorganic fertilizers was able to alter the abundance of functional soil microbial population. Application of inorganic N fertilizer resulted in distinctive changes on N-cycle microorganisms. Phosphate-solubilizing functional genes abundance was lower in plots with no phosphate fertilizer. Sequencing analysis showed that the presence or absence of N in the fertilizer mix is a key factor affecting bacterial community diversity of agricultural soil, and pH, total organic C, and total N show a high correlation with bacterial community composition. Nitrogen addition increased the N concentration in the soil, which could cause changes in the soil pH and change the soil bacterial community. Our findings proved that interaction of N fertilizer with other fertilizers can affect microbial communities.


Assuntos
Fertilizantes , Nitrogênio , Microbiologia do Solo , Solo , Agricultura , Bactérias/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Nitrogênio/farmacologia , Solo/química , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...