Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Calcium ; 91: 102264, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32957029

RESUMO

Hepatic ischemia-reperfusion injury is seen in a variety of clinical conditions, including hepatic thrombosis, systemic hypotension, and liver transplantation. Calcium (Ca2+) signaling mediates several pathophysiological processes in the liver, but it is not known whether and how intracellular Ca2+ channels are involved in the hepatocellular events secondary to ischemia-reperfusion. Using an animal model of hepatic ischemia-reperfusion injury, we observed a progressive increase in expression of the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular Ca2+ channel that is not normally expressed in healthy hepatocytes. ITPR3 expression was upregulated, at least in part, by a combination of demethylation of the ITPR3 promoter region and the increased transcriptional activity of the nuclear factor of activated T-cells (NFAT). Additionally, expression of pro-inflammatory interleukins and necrotic surface area were less pronounced in livers of control animals compared to liver-specific ITPR3 KO mice subjected to hepatic damage. Corroborating these findings, ITPR3 expression and activation of NFAT were observed in hepatocytes of liver biopsies from patients who underwent liver ischemia caused by thrombosis after organ transplant. Together, these results are consistent with the idea that ITPR3 expression in hepatocytes plays a protective role during hepatic injury induced by ischemia-reperfusion.


Assuntos
Hepatócitos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fígado/metabolismo , Fígado/patologia , Substâncias Protetoras/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Sinalização do Cálcio , Desmetilação do DNA , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição NFATC/metabolismo , Regiões Promotoras Genéticas/genética
2.
Hepatology ; 71(2): 583-599, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31251815

RESUMO

Cholangiocarcinoma (CCA) is the second most common malignancy arising in the liver. It carries a poor prognosis, in part because its pathogenesis is not well understood. The type 3 inositol 1,4,5-trisphosphate receptor (ITPR3) is the principal intracellular calcium ion (Ca2+ ) release channel in cholangiocytes, and its increased expression has been related to the pathogenesis of malignancies in other types of tissues, so we investigated its role in CCA. ITPR3 expression was increased in both hilar and intrahepatic CCA samples as well as in CCA cell lines. Deletion of ITPR3 from CCA cells impaired proliferation and cell migration. A bioinformatic analysis suggested that overexpression of ITPR3 in CCA would have a mitochondrial phenotype, so this was also examined. ITPR3 normally is concentrated in a subapical region of endoplasmic reticulum (ER) in cholangiocytes, but both immunogold electron microscopy and super-resolution microscopy showed that ITPR3 in CCA cells was also in regions of ER in close association with mitochondria. Deletion of ITPR3 from these cells impaired mitochondrial Ca2+ signaling and led to cell death. Conclusion: ITPR3 expression in cholangiocytes becomes enhanced in CCA. This contributes to malignant features, including cell proliferation and migration and enhanced mitochondrial Ca2+ signaling.


Assuntos
Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/etiologia , Colangiocarcinoma/patologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Células Cultivadas , Humanos
3.
Gut ; 68(9): 1676-1687, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31315892

RESUMO

BACKGROUND & OBJECTIVES: Hepatocellular carcinoma (HCC) is the second leading cause of cancer death worldwide. Several types of chronic liver disease predispose to HCC, and several different signalling pathways have been implicated in its pathogenesis, but no common molecular event has been identified. Ca2+ signalling regulates the proliferation of both normal hepatocytes and liver cancer cells, so we investigated the role of intracellular Ca2+ release channels in HCC. DESIGN: Expression analyses of the type 3 isoform of the inositol 1, 4, 5-trisphosphate receptor (ITPR3) in human liver samples, liver cancer cells and mouse liver were combined with an evaluation of DNA methylation profiles of ITPR3 promoter in HCC and characterisation of the effects of ITPR3 expression on cellular proliferation and apoptosis. The effects of de novo ITPR3 expression on hepatocyte calcium signalling and liver growth were evaluated in mice. RESULTS: ITPR3 was absent or expressed in low amounts in hepatocytes from normal liver, but was expressed in HCC specimens from three independent patient cohorts, regardless of the underlying cause of chronic liver disease, and its increased expression level was associated with poorer survival. The ITPR3 gene was heavily methylated in control liver specimens but was demethylated at multiple sites in specimens of patient with HCC. Administration of a demethylating agent in a mouse model resulted in ITPR3 expression in discrete areas of the liver, and Ca2+ signalling was enhanced in these regions. In addition, cell proliferation and liver regeneration were enhanced in the mouse model, and deletion of ITPR3 from human HCC cells enhanced apoptosis. CONCLUSIONS: These results provide evidence that de novo expression of ITPR3 typically occurs in HCC and may play a role in its pathogenesis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Neoplasias Hepáticas/metabolismo , Adulto , Animais , Apoptose/fisiologia , Sinalização do Cálcio/fisiologia , Carcinogênese/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/fisiologia , Células Cultivadas , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/deficiência , Receptores de Inositol 1,4,5-Trifosfato/genética , Fígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Regeneração Hepática/fisiologia , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Análise de Sobrevida
4.
Hepatology ; 67(4): 1420-1440, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28922472

RESUMO

Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease associated with autoimmune phenomena targeting intrahepatic bile duct cells (cholangiocytes). Although its etiopathogenesis remains obscure, development of antimitochondrial autoantibodies against pyruvate dehydrogenase complex E2 is a common feature. MicroRNA (miR) dysregulation occurs in liver and immune cells of PBC patients, but its functional relevance is largely unknown. We previously reported that miR-506 is overexpressed in PBC cholangiocytes and directly targets both Cl- / HCO3- anion exchanger 2 and type III inositol 1,4,5-trisphosphate receptor, leading to cholestasis. Here, the regulation of miR-506 gene expression and its role in cholangiocyte pathophysiology and immune activation was studied. Several proinflammatory cytokines overexpressed in PBC livers (such as interleukin-8 [IL8], IL12, IL17, IL18, and tumor necrosis factor alpha) stimulated miR-506 promoter activity in human cholangiocytes, as revealed by luciferase reporter assays. Experimental overexpression of miR-506 in cholangiocytes dysregulated the cell proteomic profile (by mass spectrometry), affecting proteins involved in different biological processes including mitochondrial metabolism. In cholangiocytes, miR-506 (1) induced dedifferentiation with down-regulation of biliary and epithelial markers together with up-regulation of mesenchymal, proinflammatory, and profibrotic markers; (2) impaired cell proliferation and adhesion; (3) increased oxidative and endoplasmic reticulum stress; (4) caused DNA damage; and (5) sensitized to caspase-3-dependent apoptosis induced by cytotoxic bile acids. These events were also associated with impaired energy metabolism in mitochondria (proton leak and less adenosine triphosphate production) and pyruvate dehydrogenase complex E2 overexpression. Coculture of miR-506 overexpressing cholangiocytes with PBC immunocytes induced activation and proliferation of PBC immunocytes. CONCLUSION: Different proinflammatory cytokines enhance the expression of miR-506 in biliary epithelial cells; miR-506 induces PBC-like features in cholangiocytes and promotes immune activation, representing a potential therapeutic target for PBC patients. (Hepatology 2018;67:1420-1440).


Assuntos
Ductos Biliares Intra-Hepáticos/patologia , Células Epiteliais/metabolismo , Cirrose Hepática Biliar/metabolismo , MicroRNAs/metabolismo , Apoptose , Ductos Biliares Intra-Hepáticos/metabolismo , Técnicas de Cultura de Células , Ensaios de Migração Celular , Proliferação de Células , Citocinas/metabolismo , Imunofluorescência , Regulação da Expressão Gênica/genética , Humanos , Immunoblotting , Espectrometria de Massas , Estresse Oxidativo , Proteômica , Transdução de Sinais/genética
5.
Hepatology ; 67(2): 560-574, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29023819

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. It may result in several types of liver problems, including impaired liver regeneration (LR), but the mechanism for this is unknown. Because LR depends on calcium signaling, we examined the effects of NAFLD on expression of the type II inositol 1,4,5-trisphosphate receptor (ITPR2), the principle calcium release channel in hepatocytes. ITPR2 promoter activity was measured in Huh7 and HepG2 cells. ITPR2 and c-Jun protein levels were evaluated in Huh7 cells, in liver tissue from a rat model of NAFLD, and in liver biopsy specimens of patients with simple steatosis and nonalcoholic steatohepatitis (NASH). LR was assessed in wild-type and Itpr2 knockout (Itpr2-/- ) mice following 67% hepatectomy. Cell proliferation was examined in ITPR2-knockout HepG2 cells generated by the CRISPR/Cas9 system. c-Jun dose dependently decreased activity of the human ITPR2 promoter. c-Jun expression was increased and ITPR2 was decreased in fat-loaded Huh7 cells and in livers of rats fed a high-fat, high-fructose diet. Overexpression of c-Jun reduced protein and mRNA expression of ITPR2 in Huh7 cells, whereas knockdown of c-Jun prevented the decrease of ITPR2 in fat-loaded Huh7 cells. ITPR2 expression was decreased and c-Jun was increased in liver biopsies of patients with steatosis and NASH compared to controls. ITPR2-knockout cells exhibited less nuclear calcium signaling and cell proliferation than control cells. LR assessed by Ki-67 and proliferating cell nuclear antigen was markedly decreased in Itpr2-/- mice. Conclusion: Fatty liver induces a c-Jun-mediated decrease in ITPR2 in hepatocytes. This may account for the impaired LR that occurs in NAFLD. (Hepatology 2018;67:560-574).


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Sinalização do Cálcio , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Fígado/metabolismo , Regeneração Hepática , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley
6.
Biochem Biophys Res Commun ; 486(3): 659-664, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28327356

RESUMO

The type 2 inositol 1,4,5-trisphosphate receptor (IP3R2) is the principal intracellular Ca2+ release channel in hepatocytes, and so is important for bile secretion and other functions. IP3R2 activity is regulated in part by post-translational modifications but little is known about transcriptional regulation of its expression. We found that both IP3R2 mRNA and protein levels in liver were increased during fasting. Treatment of hepatocytes with forskolin or 8-CPT-cAMP also increased IP3R2, and this was reduced by actinomycin D. Analysis of the IP3R2 promoter revealed five CREs, and CREB potently increased promoter activity. Mutation of CRE4 or CRE5 decreased induction by CREB, and ChIP assay showed recruitment of CREB to these sites. Adenylyl cyclase (AC) 6 and 9 were the principal AC isoforms detected in rat hepatocytes, and silencing either one decreased organic anion secretion, which depends on IP3R2. Secretion furthermore was increased by overnight but not acute treatment with forskolin or 8-CPT-cAMP. These findings provide evidence that IP3R2 expression is transcriptionally regulated by cAMP via CREB binding to CRE elements in its promoter. The findings furthermore suggest that this mechanism is relevant for hormonal regulation of bile secretion.


Assuntos
Proteína de Ligação a CREB/genética , AMP Cíclico/metabolismo , Hepatócitos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , RNA Mensageiro/genética , Elementos de Resposta , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Sítios de Ligação , Proteína de Ligação a CREB/metabolismo , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Dactinomicina/farmacologia , Jejum , Regulação da Expressão Gênica , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Mutação , Cultura Primária de Células , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Tionucleotídeos/farmacologia
8.
Am J Physiol Gastrointest Liver Physiol ; 310(8): G618-28, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26867564

RESUMO

In this study we identified the mechanisms underlying the inhibitory effects of NF-κB on the expression of genes encoding multiple liver transport proteins. Well-conserved NF-κB binding sites were found in the promoters of farnesoid X receptor (FXR)-target genes. An electromobility shift assay (EMSA) demonstrated the specific interaction between the NF-κB p65 protein and a (32)P-labeled BSEP NF-κB response element (NF-κBE). Chromatin immunoprecipitation (ChIP) analysis confirmed binding of NF-κB p65 to the BSEP locus but not the FXRE in vitro. NF-κB p65 overexpression in Huh-7 cells markedly repressed FXR/RXR transactivation of the BSEP, ABCG5/G8, MRP2, and FXR promoters, which was totally reversed by expression of the IκBα super-repressor. NF-κB interacted directly with FXR on coimmunoprecipitation, suggesting another level for the inhibitory effects of NF-κB on FXR-target genes. In vivo ChIP analysis with liver nuclei obtained from mice after 3 days of common bile duct ligation (BDL) or 6 h post-lipopolysaccharide (LPS) injection showed a markedly increased recruitment of NF-κB p65 to the Bsep promoter compared with controls. There was also increased recruitment of the corepressor silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and histone deacetylase (HDAC)3 and HDAC2 to the NF-κB sites. We also found that NF-κB p65 was recruited to NF-κB binding sites in the promoters of organic solute transporter, OSTα and OSTß, and unexpectedly activated rather than repressed gene expression. In mouse liver after BDL NF-κB recruitment to Ostα and Ostß promoters was associated with increased binding of the potent coactivator cAMP response element binding protein (CREB)-binding protein (CBP)/p300 to the NF-κBE and depletion of CBP/p300 at the FXR element. Overall, these studies demonstrate a novel role for NF-κB in adaptation to obstructive and LPS-induced cholestasis acting through recruitment to specific NF-κB binding sites in the promoters of FXR-target genes and possibly through direct interaction with FXR.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Fígado/metabolismo , Elementos de Resposta , Fator de Transcrição RelA/metabolismo , Ativação Transcricional , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Correpressor 2 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/metabolismo , Ligação Proteica
10.
Gastroenterology ; 149(1): 211-222.e10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25796361

RESUMO

BACKGROUND & AIMS: Most cholestatic disorders are caused by defects in cholangiocytes. The type 3 isoform of the inositol 1,4,5-trisphosphate receptor (ITPR3) is the most abundant intracellular calcium release channel in cholangiocytes. ITPR3 is required for bicarbonate secretion by bile ducts, and its expression is reduced in intrahepatic bile ducts of patients with cholestatic disorders. We investigated whether the nuclear factor, erythroid 2-like 2 (NFE2L2 or NRF2), which is sensitive to oxidative stress, regulates expression of ITPR3. METHODS: The activity of the ITPR3 promoter was measured in normal human cholangiocyte (NHC) cells and primary mouse cholangiocytes. Levels of ITPR3 protein and messenger RNA were examined by immunoblot and polymerase chain reaction analyses, respectively. ITPR3 activity was determined by measuring calcium signaling in normal human cholangiocyte cells and secretion in isolated bile duct units. Levels of NRF2 were measured in liver tissues from rats with cholestasis (induced by administration of α-napthylisothiocyanate) and from patients with biliary diseases. RESULTS: We identified a musculo-aponeurotic fibrosarcoma recognition element in the promoter of ITPR3 that bound NRF2 directly in NHC cells and mouse cholangiocytes. Increasing binding of NRF2 at this site resulted in chromatin remodeling that reduced promoter activity. Mutant forms of the musculo-aponeurotic fibrosarcoma recognition element did not bind NRF2. Activation of NRF2 with quercetin or by oxidative stress reduced expression of ITPR3 and calcium signaling in NHC cells; quercetin also reduced secretion by bile duct units isolated from rats. Knockdown of NRF2 with small interfering RNAs restored expression and function of ITPR3 in NHC cells incubated with quercetin. Bile ducts from rats with cholestasis and patients with cholangiopathic disorders expressed higher levels of NRF2 and lower levels of ITPR3 than ducts from control rats or patients with other liver disorders. CONCLUSIONS: The transcription factor NRF2 binds to the promoter of ITPR3 to inhibit its expression in cholangiocytes, leading to reduced calcium signaling and bile duct secretion. This could be a mechanism by which oxidative stress inhibits these processes and contributes to cholangiopathies.


Assuntos
Ductos Biliares Intra-Hepáticos/metabolismo , Sinalização do Cálcio/genética , Células Epiteliais/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Fator 2 Relacionado a NF-E2/genética , Transdução de Sinais/genética , Animais , Ductos Biliares Intra-Hepáticos/citologia , Sinalização do Cálcio/fisiologia , Linhagem Celular , Células Epiteliais/citologia , Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/genética , Ratos , Fatores de Transcrição/metabolismo
11.
J Biol Chem ; 290(1): 184-96, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25378392

RESUMO

The type III isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R3) is apically localized and triggers Ca(2+) waves and secretion in a number of polarized epithelia. However, nothing is known about epigenetic regulation of this InsP3R isoform. We investigated miRNA regulation of InsP3R3 in primary bile duct epithelia (cholangiocytes) and in the H69 cholangiocyte cell line, because the role of InsP3R3 in cholangiocyte Ca(2+) signaling and secretion is well established and because loss of InsP3R3 from cholangiocytes is responsible for the impairment in bile secretion that occurs in a number of liver diseases. Analysis of the 3'-UTR of human InsP3R3 mRNA revealed two highly conserved binding sites for miR-506. Transfection of miR-506 mimics into cell lines expressing InsP3R3-3'UTR-luciferase led to decreased reporter activity, whereas co-transfection with miR-506 inhibitors led to enhanced activity. Reporter activity was abrogated in isolated mutant proximal or distal miR-506 constructs in miR-506-transfected HEK293 cells. InsP3R3 protein levels were decreased by miR-506 mimics and increased by inhibitors, and InsP3R3 expression was markedly decreased in H69 cells stably transfected with miR-506 relative to control cells. miR-506-H69 cells exhibited a fibrotic signature. In situ hybridization revealed elevated miR-506 expression in vivo in human-diseased cholangiocytes. Histamine-induced, InsP3-mediated Ca(2+) signals were decreased by 50% in stable miR-506 cells compared with controls. Finally, InsP3R3-mediated fluid secretion was significantly decreased in isolated bile duct units transfected with miR-506, relative to control IBDU. Together, these data identify miR-506 as a regulator of InsP3R3 expression and InsP3R3-mediated Ca(2+) signaling and secretion.


Assuntos
Cálcio/metabolismo , Epigênese Genética , Células Epiteliais/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Cirrose Hepática Biliar/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Sequência de Bases , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular , Células Epiteliais/patologia , Genes Reporter , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/metabolismo , Dados de Sequência Molecular , Ligação Proteica
12.
Hepatology ; 59(3): 1030-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24122873

RESUMO

UNLABELLED: Multidrug resistance transporter 3/ATP-binding cassette protein subfamily B4 (MDR3/ABCB4) is a critical determinant of biliary phosphatidylcholine (PC) secretion. Clinically, mutations and partial deficiencies in MDR3 result in cholestatic liver injury. Thus, MDR3 is a potential therapeutic target for cholestatic liver disease. Fenofibrate is a peroxisome proliferator-activated receptor (PPAR) α ligand that has antiinflammatory actions and regulates bile acid detoxification. Here we examined the mechanism by which fenofibrate regulates MDR3 gene expression. Fenofibrate significantly up-regulated MDR3 messenger RNA (mRNA) and protein expression in primary cultured human hepatocytes, and stimulated MDR3 promoter activity in HepG2 cells. In silico analysis of 5'-upstream region of human MDR3 gene revealed a number of PPARα response elements (PPRE). Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated specific binding of PPARα to the human MDR3 promoter. Targeted mutagenesis of three novel PPREs reduced inducibility of the MDR3 promoter by fenofibrate. In collagen sandwich cultured rat hepatocytes, treatment with fenofibrate increased secretion of fluorescent PC into bile canaliculi. CONCLUSION: Fenofibrate transactivates MDR3 gene transcription by way of the binding of PPARα to three novel and functionally critical PPREs in the MDR3 promoter. Fenofibrate treatment further stimulates biliary phosphatidylcholine secretion in rat hepatocytes, thereby providing a functional correlate. We have established a molecular mechanism that may contribute to the beneficial use of fenofibrate therapy in human cholestatic liver disease.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Colestase/metabolismo , Fenofibrato/farmacologia , PPAR alfa/metabolismo , Fosfatidilcolinas/metabolismo , Animais , Canalículos Biliares/metabolismo , Sistema Biliar/efeitos dos fármacos , Sistema Biliar/metabolismo , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipolipemiantes/farmacologia , PPAR alfa/agonistas , Cultura Primária de Células , Regiões Promotoras Genéticas/fisiologia , Ratos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
13.
EMBO Mol Med ; 4(9): 882-95, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22767443

RESUMO

Bile secretion is essential for whole body sterol homeostasis. Loss-of-function mutations in specific canalicular transporters in the hepatocyte disrupt bile flow and result in cholestasis. We show that two of these transporters, ABCB11 and ATP8B1, are functional targets of miR-33, a micro-RNA that is expressed from within an intron of SREBP-2. Consequently, manipulation of miR-33 levels in vivo with adenovirus or with antisense oligonucleotides results in changes in bile secretion and bile recovery from the gallbladder. Using radiolabelled cholesterol, we show that systemic silencing of miR-33 leads to increased sterols in bile and enhanced reverse cholesterol transport in vivo. Finally, we report that simvastatin causes, in a dose-dependent manner, profound hepatotoxicity and lethality in mice fed a lithogenic diet. These latter results are reminiscent of the recurrent cholestasis found in some patients prescribed statins. Importantly, pretreatment of mice with anti-miR-33 oligonucleotides rescues the hepatotoxic phenotype. Therefore, we conclude that miR-33 mediates some of the undesired, hepatotoxic effects of statins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Adenosina Trifosfatases/biossíntese , Regulação da Expressão Gênica , MicroRNAs/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Animais , Bile/metabolismo , Células Cultivadas , Dieta/métodos , Hepatócitos/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas de Transferência de Fosfolipídeos , Sinvastatina/administração & dosagem , Sinvastatina/efeitos adversos
15.
J Nucl Med ; 50(7): 1140-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19525466

RESUMO

UNLABELLED: The organic anion (99m)Tc-N-[2-[(3-bromo-2,4,6-trimethylphenyl)-amino]-2-oxoethyl]-N-(carboxymethyl)-glycine ((99m)Tc-mebrofenin) and its analogs are widely used for hepatobiliary imaging. Identification of the mechanisms directing bile canalicular transport of these agents will provide insights into the basis of their hepatic handling for assessing perturbations. METHODS: We performed studies in animals, including healthy Fischer 344 rats or rats treated with carbon tetrachloride or intrasplenic cell transplantation and healthy Wistar rats or HsdAMC:TR-Abcc2 mutant rats in Wistar background. Onset of hepatic inflammation was verified by analysis of carbon uptake in Kupffer cells. Hepatic clearance of (99m)Tc-mebrofenin was studied with dynamic imaging, and fractional retention of peak hepatic mebrofenin activity after 60 min was determined. Changes in the expression of bile canalicular transporters were analyzed by real-time polymerase chain reaction and Western blots. RESULTS: Carbon tetrachloride and cell transplantation produced hepatic inflammation with activation of Kupffer cells, resulting in a rapid decline in the expression of the bile canalicular transporters Abcb4, Abcb11, and Abcc2. Among these transporters, decreased expression of Abcc2 was most prominent, and this decline persisted for 4 wk. Next, we examined (99m)Tc-mebrofenin excretion in HsdAMC:TR-Abcc2 mutant rats (in which Abcc2 expression is naturally inactivated), compared with their healthy counterparts. In healthy HsdRccHan:WIST rats, only 23% +/- 3% of the peak (99m)Tc-mebrofenin activity was retained after 60 min. By contrast, in HsdAMC:TR-Abcc2 mutant rats, 73% +/- 5% of the peak (99m)Tc-mebrofenin activity was retained (P < 0.001). Moreover, the administration of cyclosporin A markedly inhibited (99m)Tc-mebrofenin excretion in healthy rats, with no further effect on already impaired (99m)Tc-mebrofenin excretion in HsdAMC:TR-Abcc2 mutant rats. Hepatic excretion of (99m)Tc-mebrofenin was largely dependent on Abcc2. This molecular basis of (99m)Tc-mebrofenin excretion will advance studies of pathophysiologic mechanisms in hepatic Abcc2 pathways.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Iminoácidos/farmacocinética , Cirrose Hepática Experimental/diagnóstico por imagem , Cirrose Hepática Experimental/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Compostos de Organotecnécio/farmacocinética , Compostos de Anilina , Animais , Tetracloreto de Carbono , Glicina , Cirrose Hepática Experimental/induzido quimicamente , Taxa de Depuração Metabólica , Cintilografia , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Distribuição Tecidual
16.
Am J Physiol Gastrointest Liver Physiol ; 295(2): G226-33, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18483185

RESUMO

Sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake system for conjugated bile acids. Deletions of hepatocyte nuclear factor (HNF)-1alpha and retinoid X receptor-alpha:retinoic acid receptor-alpha binding sites in the mouse 5'-flanking region corresponding to putatively central regulatory elements of rat Ntcp do not significantly reduce promoter activity. We hypothesized that HNF-4alpha, which is increasingly recognized as a central regulator of hepatocyte function, may directly transactivate mouse (mNtcp). A 1.1-kb 5'-upstream region including the mouse Ntcp promoter was cloned and compared with the rat promoter. In contrast to a moderate 3.5-fold activation of mNtcp by HNF-1alpha, HNF-4alpha cotransfection led to a robust 20-fold activation. Deletion analysis of mouse and rat Ntcp promoters mapped a conserved HNF-4alpha consensus site at -345/-326 and -335/-316 bp, respectively. p-475bpmNtcpLUC is not transactivated by HNF-1alpha but shows a 50-fold enhanced activity upon cotransfection with HNF-4alpha. Gel mobility shift assays demonstrated a complex of the HNF-4alpha-element formed with liver nuclear extracts that was blocked by an HNF-4alpha specific antibody. HNF-4alpha binding was confirmed by chromatin immunoprecipitation. Using Hepa 1-6 cells, HNF-4alpha-knockdown resulted in a significant 95% reduction in NTCP mRNA. In conclusion, mouse Ntcp is regulated by HNF-4alpha via a conserved distal cis-element independently of HNF-1alpha.


Assuntos
Fator 4 Nuclear de Hepatócito/fisiologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Ativação Transcricional/efeitos dos fármacos , Animais , Regulação para Baixo , Camundongos , Regiões Promotoras Genéticas/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos
17.
J Neurochem ; 106(3): 1052-65, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18466338

RESUMO

The DYT1 gene encodes for torsinA, a protein with widespread tissue distribution, involved in early onset dystonia (EOD). Numerous studies have focused on torsinA function but no information is available on its transcriptional regulation. We cloned mouse and human 5'-upstream DYT1 DNA fragments, exhibiting high transcriptional activity, as well as tissue specificity. We identified a proximal minimal DYT1 promoter within -141 bp for mouse and -191 bp for human with respect to the ATG codon. Primer extension analysis indicated multiple transcription start sites. In silico analysis of approximately 500 bp 5'-upstream DYT1 fragment demonstrated lack of a classical TATA or CAAT box and the presence of a highly conserved direct repeat of two Ets binding cores within -86 bp to -77 bp and -78 bp to -69 bp of the mouse and human DYT1 gene, respectively. A single or a two base nucleotide alteration within the downstream Ets core resulted in approximately 90% (mouse) or 45-60% (human) drop in activity. Interestingly, a 3-bp distance increase between the two Ets cores dramatically decreased transcriptional activity which was partially restored when the distance was increased up to 10 bp. Ets-like dominant negatives confirmed the Ets factors as DYT1 transcriptional activators.


Assuntos
Regulação da Expressão Gênica/fisiologia , Chaperonas Moleculares/biossíntese , Chaperonas Moleculares/genética , Proteínas Proto-Oncogênicas c-ets/fisiologia , Transativadores/fisiologia , Animais , Sequência de Bases/fisiologia , Sítios de Ligação/fisiologia , Linhagem Celular , Distonia Muscular Deformante/genética , Distonia Muscular Deformante/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Família Multigênica , Ratos , Síndrome de Tourette/genética , Síndrome de Tourette/metabolismo
18.
Biochim Biophys Acta ; 1778(5): 1283-91, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18328802

RESUMO

BACKGROUND: The relevance of discrete localization of hepatobiliary transporters in specific membrane microdomains is not well known. AIM: To determine whether the Na+/taurocholate cotransporting polypeptide (Ntcp), the main hepatic sinusoidal bile salt transporter, is localized in specific membrane microdomains. METHODS: Presence of Ntcp in membrane rafts obtained from mouse liver was studied by immunoblotting and immunofluorescence. HEK-293 cells stably transfected with rat Ntcp were used for in vitro studies. Expression, localization and function of Ntcp in these cells were assessed by immunoblotting, immunofluorescence and biotinylation studies and Na+ -dependent taurocholate uptake assays, respectively. The effect of cholesterol depletion/repletion assays on Ntcp function was also investigated. RESULTS: Ntcp localized primarily to membrane rafts in in vivo studies and localized partially in membrane rafts in transfected HEK-293 cells. In these cells, membrane cholesterol depletion resulted in a shift of Ntcp localization into non-membrane rafts, which correlated with a 2.5-fold increase in taurocholate transport. Cholesterol repletion shifted back part of Ntcp into membrane rafts, and normalized taurocholate transport to values similar to control cells. CONCLUSION: Ntcp localizes in membrane rafts and its localization and function are regulated by membrane cholesterol content. This may serve as a novel regulatory mechanism of bile salt transport in liver.


Assuntos
Lipídeos de Membrana/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Imunofluorescência , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...