Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 143(5): 429-443, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847858

RESUMO

ABSTRACT: Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.


Assuntos
Infecções por Vírus Epstein-Barr , Doença de Hodgkin , Linfoma Difuso de Grandes Células B , MicroRNAs , Humanos , Antagomirs , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Doença de Hodgkin/complicações , Ligantes , Linfoma Difuso de Grandes Células B/metabolismo , MicroRNAs/genética , Proteínas Virais/metabolismo
2.
J Exp Clin Cancer Res ; 42(1): 189, 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37507791

RESUMO

The 5th Workshop IRE on Translational Oncology was held in Rome (Italy) on 27-28 March at the IRCCS Regina Elena National Cancer Institute. This meeting entitled "The New World of RNA diagnostics and therapeutics" highlightes the significant progress in the RNA field made over the last years. Research moved from pure discovery towards the development of diagnostic biomarkers or RNA-base targeted therapies seeking validation in several clinical trials. Non-coding RNAs in particular have been the focus of this workshop due to their unique properties that make them attractive tools for the diagnosis and therapy of cancer.This report collected the presentations of many scientists from different institutions that discussed recent oncology research providing an excellent overview and representative examples for each possible application of RNA as biomarker, for therapy or to increase the number of patients that can benefit from precision oncology treatment.In particular, the meeting specifically emphasized two key features of RNA applications: RNA diagnostic (Blandino, Palcau, Sestito, Díaz Méndez, Cappelletto, Pulito, Monteonofrio, Calin, Sozzi, Cheong) and RNA therapeutics (Dinami, Marcia, Anastasiadou, Ryan, Fattore, Regazzo, Loria, Aharonov).


Assuntos
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Biomarcadores , Oncologia , Itália
3.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511139

RESUMO

The global rise of single-use throw-away plastic products has elicited a massive increase in the nano/microplastics (N/MPLs) exposure burden in humans. Recently, it has been demonstrated that disposable period products may release N/MPLs with usage, which represents a potential threat to women's health which has not been scientifically addressed yet. By using polyethyl ene (PE) particles (200 nm to 9 µm), we showed that acute exposure to a high concentration of N/MPLs induced cell toxicity in vaginal keratinocytes after effective cellular uptake, as viability and apoptosis data suggest, along with transmission electron microscopy (TEM) observations. The internalised N/MPLs altered the expression of junctional and adherence proteins and the organisation of the actin cortex, influencing the level of genes involved in oxidative stress signalling pathways and that of miRNAs related to epithelial barrier function. When the exposure to PE N/MPLs was discontinued or became chronic, cells were able to recover from the negative effects on viability and differentiation/proliferation gene expression in a few days. However, in all cases, PE N/MPL exposure prompted a sustained alteration of DNA methyltransferase and DNA demethylase expression, which might impact epigenetic regulation processes, leading to accelerated cell ageing and inflammation, or the occurrence of malignant transformation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Feminino , Microplásticos/toxicidade , Plásticos , Polietileno , Epigênese Genética , Queratinócitos/química , Poluentes Químicos da Água/toxicidade
5.
Expert Rev Endocrinol Metab ; 17(6): 547-561, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36352537

RESUMO

INTRODUCTION: Extensive research underlines the critical functions of androgens in females. Nevertheless, the precise mechanisms of their action are poorly understood. Here, we review the existing literature regarding the physiological role of androgens in women throughout life. AREAS COVERED: Several studies show that androgen receptors (ARs) are broadly expressed in numerous female tissues. They are essential for many physiological processes, including reproductive, sexual, cardiovascular, bone, muscle, and brain health. They are also involved in adipose tissue and liver function. Androgen levels change with the menstrual cycle and decrease in the first decades of life, independently of menopause. EXPERT OPINION: To date, studies are limited by including small numbers of women, the difficulty of dosing androgens, and their cyclical variations. In particular, whether androgens play any significant role in regulating the establishment of pregnancy is poorly understood. The neural functions of ARs have also been investigated less thoroughly, although it is expressed at high levels in brain structures. Moreover, the mechanism underlying the decline of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) with age is unclear. Other factors, including estrogen's effect on adrenal androgen production, reciprocal regulation of ARs, and non-classical effects of androgens, remain to be determined.


Assuntos
Androgênios , Desidroepiandrosterona , Gravidez , Feminino , Humanos , Menopausa , Ciclo Menstrual
6.
Pharm Res ; 39(11): 2709-2720, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36071352

RESUMO

PURPOSE: MicroRNAs (miRNAs) are short (~ 22 nts) RNAs that regulate gene expression via binding to mRNA. MiRNAs promoting cancer are known as oncomiRs. Targeting oncomiRs is an emerging area of cancer therapy. OncomiR-21 and oncomiR-155 are highly upregulated in lymphoma cells, which are dependent on these oncomiRs for survival. Targeting specific miRNAs and determining their effect on cancer cell progression and metastasis have been the focus of various studies. Inhibiting a single miRNA can have a limited effect, as there may be other overexpressed miRNAs present that may promote tumor proliferation. Herein, we target miR-21 and miR-155 simultaneously using nanoparticles delivered two different classes of antimiRs: phosphorothioates (PS) and peptide nucleic acids (PNAs) and compared their efficacy in lymphoma cell lines. METHODS: Poly-Lactic-co-Glycolic acid (PLGA) nanoparticles (NPs) containing PS and PNA-based antimiR-21 and -155 were formulated, and comprehensive NP characterizations: morphology (scanning electron microscopy), size (differential light scattering), and surface charge (zeta potential) were performed. Cellular uptake analysis was performed using a confocal microscope and flow cytometry analysis. The oncomiR knockdown and the effect on downstream targets were confirmed by gene expression (real time-polymerase chain reaction) assay. RESULTS: We demonstrated that simultaneous targeting with NP delivered PS and PNA-based antimiRs resulted in significant knockdown of miR-21 and miR-155, as well as their downstream target genes followed by reduced cell viability ex vivo. CONCLUSIONS: This project demonstrated that targeting miRNA-155 and miR-21 simultaneously using nanotechnology and a diverse class of antisense oligomers can be used as an effective approach for lymphoma therapy.


Assuntos
Linfoma , MicroRNAs , Ácidos Nucleicos Peptídicos , Humanos , Ácidos Nucleicos Peptídicos/farmacologia , Antagomirs , MicroRNAs/genética , Linfoma/tratamento farmacológico , Linfoma/genética , Linhagem Celular , Linhagem Celular Tumoral
7.
Cells ; 10(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34831178

RESUMO

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood. Recently, we demonstrated the overexpression of both DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B) in RMS tumour biopsies and cell lines compared to normal skeletal muscle. Radiotherapy may often fail due to the abnormal expression of some molecules able to drive resistance mechanisms. The aim of this study was to analyse the involvement of DNMT3A and DNMT3B in radioresistance in RMS. RNA interference experiments against DNMT3A/3B were performed in embryonal RMS cells, upon ionizing radiation (IR) exposure and the effects of the combined treatment on RMS cells were analysed. DNMT3A and DNMT3B knocking down increased the sensitivity of RMS cells to IR, as indicated by the drastic decrease of colony formation ability. Interestingly, DNMT3A/3B act in two different ways: DNMT3A silencing triggers the cellular senescence program by up-regulating p16 and p21, whilst DNMT3B depletion induces significant DNA damage and impairs the DNA repair machinery (ATM, DNA-PKcs and Rad51 reduction). Our findings demonstrate for the first time that DNMT3A and DNMT3B overexpression may contribute to radiotherapy failure, and their inhibition might be a promising radiosensitizing strategy, mainly in the treatment of patients with metastatic or recurrent RMS tumours.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A/metabolismo , Tolerância a Radiação , Rabdomiossarcoma Embrionário/radioterapia , Ciclo Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Senescência Celular/efeitos da radiação , Células Clonais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Dano ao DNA , DNA Metiltransferase 3A/genética , Ativação Enzimática/efeitos da radiação , Regulação Neoplásica da Expressão Gênica , Inativação Gênica/efeitos da radiação , Histonas/metabolismo , Humanos , Desenvolvimento Muscular/efeitos da radiação , Tolerância a Radiação/genética , Radiação Ionizante , Rabdomiossarcoma Embrionário/genética , Regulação para Cima/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , DNA Metiltransferase 3B
9.
Genes (Basel) ; 12(9)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34573382

RESUMO

Epithelial ovarian cancer (EOC) outpaces all the other forms of the female reproductive system malignancies. MicroRNAs have emerged as promising predictive biomarkers to therapeutic treatments as their expression might characterize the tumor stage or grade. In EOC, miR-200c is considered a master regulator of oncogenes or tumor suppressors. To investigate novel miR-200c-3p target genes involved in EOC tumorigenesis, we evaluated the association between this miRNA and the mRNA expression of several potential target genes by RNA-seq data of both 46 EOC cell lines from Cancer Cell line Encyclopedia (CCLE) and 456 EOC patient bio-specimens from The Cancer Genome Atlas (TCGA). Both analyses showed a significant anticorrelation between miR-200c-3p and the protein phosphatase 3 catalytic subunit γ of calcineurin (PPP3CC) levels involved in the apoptosis pathway. Quantitative mRNA expression analysis in patient biopsies confirmed the inverse correlation between miR-200c-3p and PPP3CC levels. In vitro regulation of PPP3CC expression through miR-200c-3p and RNA interference technology led to a concomitant modulation of BCL2- and p-AKT-related pathways, suggesting the tumor suppressive role of PPP3CC in EOC. Our results suggest that inhibition of high expression of miR-200c-3p in EOC might lead to overexpression of the tumor suppressor PPP3CC and subsequent induction of apoptosis in EOC patients.


Assuntos
Apoptose/genética , Calcineurina/genética , Carcinoma Epitelial do Ovário/patologia , MicroRNAs/fisiologia , Neoplasias Ovarianas/patologia , Biópsia , Carcinoma Epitelial do Ovário/genética , Estudos de Casos e Controles , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Interferência de RNA/fisiologia , Células Tumorais Cultivadas
10.
PLoS One ; 16(9): e0257070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34534238

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) are promising therapeutic tools in regenerative medicine because they possess self-renewal, differentiation and immunomodulatory capacities. After isolation, ASCs are passaged multiple times in vitro passages to obtain a sufficient amount of cells for clinical applications. During this time-consuming procedure, ASCs become senescent and less proliferative, compromising their clinical efficacy. Here, we sought to investigate how in vitro passages impact ASC proliferation/senescence and expression of immune regulatory proteins. MicroRNAs are pivotal regulators of ASC physiology. Particularly, miR-200c is known to maintain pluripotency and targets the immune checkpoint Programmed death-ligand 1 (PD-L1). We therefore investigated its involvement in these critical characteristics of ASCs during in vitro passages. We found that when transiently expressed, miR-200c-3p promotes proliferation, maintains stemness, and contrasts senescence in late passaged ASCs. Additionally, this miRNA modulates PD-L1 and Indoleamine 2,3-Dioxygenase (IDO1) expression, thus most likely interfering with the immunoregulatory capacity of ASCs. Based on our results, we suggest that expression of miR-200c-3p may prime ASC towards a self-renewing phenotype by improving their in vitro expansion. Contrarily, its inhibition is associated with senescence, reduced proliferation and induction of immune regulators. Our data underline the potential use of miR-200c-3p as a switch for ASCs reprogramming and their clinical application.


Assuntos
Tecido Adiposo/citologia , Senescência Celular , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Antígeno B7-H1/metabolismo , Biomarcadores/metabolismo , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , MicroRNAs/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Front Cell Dev Biol ; 9: 691644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422814

RESUMO

Aberrant regulation of developmental pathways plays a key role in tumorigenesis. Tumor cells differ from normal cells in their sustained proliferation, replicative immortality, resistance to cell death and growth inhibition, angiogenesis, and metastatic behavior. Often they acquire these features as a consequence of dysregulated Hedgehog, Notch, or WNT signaling pathways. Human tumor viruses affect the cancer cell hallmarks by encoding oncogenic proteins, and/or by modifying the microenvironment, as well as by conveying genomic instability to accelerate cancer development. In addition, viral immune evasion mechanisms may compromise developmental pathways to accelerate tumor growth. Viruses achieve this by influencing both coding and non-coding gene regulatory pathways. Elucidating how oncogenic viruses intersect with and modulate developmental pathways is crucial to understanding viral tumorigenesis. Many currently available antiviral therapies target viral lytic cycle replication but with low efficacy and severe side effects. A greater understanding of the cross-signaling between oncogenic viruses and developmental pathways will improve the efficacy of next-generation inhibitors and pave the way to more targeted antiviral therapies.

12.
Biology (Basel) ; 10(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063745

RESUMO

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is a rare and complex disease defined by congenital aplasia of the vagina and uterus in 46,XX women, often associated with kidney and urinary tract anomalies. The aetiopathogenesis of MRKH syndrome is still largely unknown. Herein, we investigated the role of selected candidate genes in the aetiopathogenesis of MRKH syndrome, with a focus on PRKX, which encodes for protein kinase X. Through RT-qPCR analyses performed on vaginal dimple samples from patients, and principal component analysis (PCA), we highlighted a phenotype-related expression pattern of PRKX, MUC1, HOXC8 and GREB1L in MRKH patients. By using an in vitro approach, we proved that PRKX ectopic overexpression in a cell model of vaginal keratinocytes promotes cell motility through epithelial-to-mesenchymal transition (EMT) activation, a fundamental process in urogenital tract morphogenesis. Moreover, our findings showed that PRKX upregulation in vaginal keratinocytes is able to affect transcriptional levels of HOX genes, implicated in urinary and genital tract development. Our study identified the dysregulation of PRKX expression as a possible molecular cause for MRKH syndrome. Moreover, we propose the specific role of PRKX in vaginal keratinocyte biology as one of the possible mechanisms underlying this complex disease.

13.
Cells ; 10(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804458

RESUMO

Conventional/targeted chemotherapies and ionizing radiation (IR) are being used both as monotherapies and in combination for the treatment of epithelial ovarian cancer (EOC). Several studies show that these therapies might favor oncogenic signaling and impede anti-tumor responses. MiR-200c is considered a master regulator of EOC-related oncogenes. In this study, we sought to investigate if chemotherapy and IR could influence the expression of miR-200c-3p and its target genes, like the immune checkpoint PD-L1 and other oncogenes in a cohort of EOC patients' biopsies. Indeed, PD-L1 expression was induced, while miR-200c-3p was significantly reduced in these biopsies post-therapy. The effect of miR-200c-3p target genes was assessed in miR-200c transfected SKOV3 cells untreated and treated with olaparib and IR alone. Under all experimental conditions, miR-200c-3p concomitantly reduced PD-L1, c-Myc and ß-catenin expression and sensitized ovarian cancer cells to olaparib and irradiation. In silico analyses further confirmed the anti-correlation between miR-200c-3p with c-Myc and ß-catenin in 46 OC cell lines and showed that a higher miR-200c-3p expression associates with a less tumorigenic microenvironment. These findings provide new insights into how miR-200c-3p could be used to hold in check the adverse effects of conventional chemotherapy, targeted therapy and radiation therapy, and offer a novel therapeutic strategy for EOC.


Assuntos
Carcinoma Epitelial do Ovário/genética , Genes myc/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , MicroRNAs/metabolismo , Oncogenes/genética , beta Catenina/metabolismo , Adulto , Carcinoma Epitelial do Ovário/patologia , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Pessoa de Meia-Idade
14.
Cancers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806232

RESUMO

Ovarian cancer (OC) is the most aggressive gynecological tumor worldwide and, notwithstanding the increment in conventional treatments, many resistance mechanisms arise, this leading to cure failure and patient death. So, the use of novel adjuvant drugs able to counteract these pathways is urgently needed to improve patient overall survival. A growing interest is focused on epigenetic drugs for cancer therapy, such as Bromodomain and Extra-Terminal motif inhibitors (BETi). Here, we investigate the antitumor effects of OTX015, a novel BETi, as a single agent or in combination with ionizing radiation (IR) in OC cellular models. OTX015 treatment significantly reduced tumor cell proliferation by triggering cell cycle arrest and apoptosis that were linked to nucleolar stress and DNA damage. OTX015 impaired migration capacity and potentiated IR effects by reducing the expression of different drivers of cancer resistance mechanisms, including GNL3 gene, whose expression was found to be significantly higher in OC biopsies than in normal ovarian tissues. Gene specific knocking down and computational network analysis confirmed the centrality of GNL3 in OTX015-mediated OC antitumor effects. Altogether, our findings suggest OTX015 as an effective option to improve therapeutic strategies and overcome the development of resistant cancer cells in patients with OC.

15.
Clin Cancer Res ; 27(4): 1139-1149, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33208342

RESUMO

PURPOSE: miRNA-155 is an oncogenic miRNA highly expressed in B-cell malignancies, particularly in the non-germinal center B-cell or activated B-cell subtype of diffuse large B-cell lymphoma (ABC-DLBCL), where it is considered a potential diagnostic and prognostic biomarker. Thus, miR-155 inhibition represents an important therapeutic strategy for B-cell lymphomas. In this study, we tested the efficacy and pharmacodynamic activity of an oligonucleotide inhibitor of miR-155, cobomarsen, in ABC-DLBCL cell lines and in corresponding xenograft mouse models. In addition, we assessed the therapeutic efficacy and safety of cobomarsen in a patient diagnosed with aggressive ABC-DLBCL. EXPERIMENTAL DESIGN: Preclinical studies included the delivery of cobomarsen to highly miR-155-expressing ABC-DLBCL cell lines to assess any phenotypic changes, as well as intravenous injections of cobomarsen in NSG mice carrying ABC-DLBCL xenografts, to study tumor growth and pharmacodynamics of the compound over time. To begin to test its safety and therapeutic efficacy, a patient was recruited who underwent five cycles of cobomarsen treatment. RESULTS: Cobomarsen decreased cell proliferation and induced apoptosis in ABC-DLBCL cell lines. Intravenous administration of cobomarsen in a xenograft NSG mouse model of ABC-DLBCL reduced tumor volume, triggered apoptosis, and derepressed direct miR-155 target genes. Finally, the compound reduced and stabilized tumor growth without any toxic effects for the patient. CONCLUSIONS: Our findings support the potential therapeutic application of cobomarsen in ABC-DLBCL and other types of lymphoma with elevated miR-155 expression.


Assuntos
Linfoma Difuso de Grandes Células B/tratamento farmacológico , MicroRNAs/antagonistas & inibidores , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , MicroRNAs/metabolismo , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomolecules ; 12(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35053169

RESUMO

Coronavirus disease 2019 (COVID-19), the pandemic infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents with an extremely heterogeneous spectrum of symptoms and signs. The clinical manifestations seem to be correlated with disease severity. COVID-19 susceptibility and mortality show a significant sex imbalance, with men being more prone to infection and showing a higher rate of hospitalization and mortality compared to women. Such variability can be ascribed to both sex-related biological factors and gender-related behavioral cues. This review will discuss the potential mechanisms accounting for sex/gender influence in vulnerability to COVID-19. Cardiovascular diseases play a central role in determining COVID-19 outcome, whether they are pre-existent or arose upon infection. We will pay particular attention to the impact of sex and gender on cardiovascular manifestations related to COVID-19. Finally, we will discuss the sex-dependent variability in some biomarkers for the evaluation of COVID-19 infection and prognosis. The aim of this work is to highlight the significance of gendered medicine in setting up personalized programs for COVID-19 prevention, clinical evaluation and treatment.


Assuntos
COVID-19 , Doenças Cardiovasculares , Pandemias , SARS-CoV-2/metabolismo , Caracteres Sexuais , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/metabolismo , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Feminino , Humanos , Masculino , Fatores de Risco , Índice de Gravidade de Doença , Fatores Sexuais
17.
Front Cell Dev Biol ; 8: 236, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363193

RESUMO

Adipose-derived stem cells (ASCs) represent a promising tool for soft tissue engineering as well as for clinical treatment of inflammatory and autoimmune pathologies. The well-characterized multi-differentiation potential and self-renewal properties of ASCs are coupled with their immunomodulatory ability in providing therapeutic efficacy. Yet, their impact in immune or inflammatory disorders might rely both on cell contact-dependent mechanisms and paracrine effects, resulting in the release of various soluble factors that regulate immune cells functions. Despite the widespread use of ASCs in clinical trials addressing several pathologies, the pathophysiological mechanisms at the basis of their clinical use have been not yet fully investigated. In particular, a thorough analysis of ASC immunomodulatory potential is mandatory. Here we explore such molecular mechanisms involved in ASC immunomodulatory properties, emphasizing the relevance of the milieu composition. We review the potential clinical use of ASC secretome as a mediator for immunomodulation, with a focus on in vitro and in vivo environmental conditions affecting clinical outcome. We describe some potential strategies for optimization of ASCs immunomodulatory capacity in clinical settings, which act either on adult stem cells gene expression and local microenvironment. Finally, we discuss the limitations of both allogeneic and autologous ASC use, highlighting the issues to be fixed in order to significantly improve the efficacy of ASC-based cell therapy.

18.
Front Genet ; 11: 346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351540

RESUMO

Adult adipose tissue-derived mesenchymal stem cells (ASCs) constitute a vital population of multipotent cells capable of differentiating into numerous end-organ phenotypes. However, scientific and translational endeavors to harness the regenerative potential of ASCs are currently limited by an incomplete understanding of the mechanisms that determine cell-lineage commitment and stemness. In the current study, we used reduced representation bisulfite sequencing (RRBS) analysis to identify epigenetic gene targets and cellular processes that are responsive to 5'-azacitidine (5'-AZA). We describe specific changes to DNA methylation of ASCs, uncovering pathways likely associated with the enhancement of their proliferative capacity. We identified 4,797 differentially methylated regions (FDR < 0.05) associated with 3,625 genes, of which 1,584 DMRs annotated to the promoter region. Gene set enrichment of differentially methylated promoters identified "phagocytosis," "type 2 diabetes," and "metabolic pathways" as disproportionately hypomethylated, whereas "adipocyte differentiation" was the most-enriched pathway among hyper-methylated gene promoters. Weighted coexpression network analysis of DMRs identified clusters associated with cellular proliferation and other developmental programs. Furthermore, the ELK4 binding site was disproportionately hyper-methylated within the promoters of genes associated with AKT signaling. Overall, this study offers numerous preliminary insights into the epigenetic landscape that influences the regenerative capacity of human ASCs.

19.
Wiley Interdiscip Rev Syst Biol Med ; 12(6): e1489, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32307915

RESUMO

Network Medicine applies network science approaches to investigate disease pathogenesis. Many different analytical methods have been used to infer relevant molecular networks, including protein-protein interaction networks, correlation-based networks, gene regulatory networks, and Bayesian networks. Network Medicine applies these integrated approaches to Omics Big Data (including genetics, epigenetics, transcriptomics, metabolomics, and proteomics) using computational biology tools and, thereby, has the potential to provide improvements in the diagnosis, prognosis, and treatment of complex diseases. We discuss briefly the types of molecular data that are used in molecular network analyses, survey the analytical methods for inferring molecular networks, and review efforts to validate and visualize molecular networks. Successful applications of molecular network analysis have been reported in pulmonary arterial hypertension, coronary heart disease, diabetes mellitus, chronic lung diseases, and drug development. Important knowledge gaps in Network Medicine include incompleteness of the molecular interactome, challenges in identifying key genes within genetic association regions, and limited applications to human diseases. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Translational Medicine Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods.


Assuntos
Biologia Computacional/métodos , Animais , Teorema de Bayes , Doença das Coronárias/genética , Doença das Coronárias/metabolismo , Doença das Coronárias/patologia , Modelos Animais de Doenças , Epigenômica , Redes Reguladoras de Genes/genética , Humanos , Mapas de Interação de Proteínas/genética
20.
J Exp Clin Cancer Res ; 39(1): 3, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31898520

RESUMO

BACKGROUND: Ovarian cancer (OC) is the most lethal gynecological malignancy and the second leading cause of cancer-related death in women. Treatment with PARP inhibitors (PARPi), such as Olaparib, has been recently introduced for OC patients, but resistance may occur and underlying mechanisms are still poorly understood. The aim of this study is to identify target genes within the tumor cells that might cause resistance to Olaparib. We focused on Neuropilin 1 (NRP1), a transmembrane receptor expressed in OC and correlated with poor survival, which has been also proposed as a key molecule in OC multidrug resistance. METHODS: Using three OC cell lines (UWB, UWB-BRCA and SKOV3) as model systems, we evaluated the biological and molecular effects of Olaparib on OC cell growth, cell cycle, DNA damage and apoptosis/autophagy induction, through MTT and colony forming assays, flow cytometry, immunofluorescence and Western blot analyses. We evaluated NRP1 expression in OC specimens and cell lines by Western blot and qRT-PCR, and used RNA interference to selectively inhibit NRP1. To identify miR-200c as a regulator of NRP1, we used miRNA target prediction algorithms and Pearsons' correlation analysis in biopsies from OC patients. Then, we used a stable transfection approach to overexpress miR-200c in Olaparib-resistant cells. RESULTS: We observed that NRP1 is expressed at high levels in resistant cells (SKOV3) and is upmodulated in partially sensitive cells (UWB-BRCA) upon prolonged Olaparib treatment, leading to poor drug response. Our results show that the selective inhibition of NRP1 is able to overcome Olaparib resistance in SKOV3 cells. Moreover, we demonstrated that miR-200c can target NRP1 in OC cells, causing its downmodulation, and that miR-200c overexpression is a valid approach to restore Olaparib sensitivity in OC resistant cells. CONCLUSIONS: These data demonstrate that miR-200c significantly enhanced the anti-cancer efficacy of Olaparib in drug-resistant OC cells. Thus, the combination of Olaparib with miRNA-based therapy may represent a promising treatment for drug resistant OC, and our data may help in designing novel precision medicine trials for optimizing the clinical use of PARPi.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neoplasias Ovarianas/genética , Ftalazinas/farmacologia , Piperazinas/farmacologia , Regiões 3' não Traduzidas , Idoso , Idoso de 80 Anos ou mais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/antagonistas & inibidores , Pessoa de Meia-Idade , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , RNA Interferente Pequeno/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...