Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(8): 2755-2762, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38404386

RESUMO

Chromophores face applicability limitations due to their natural tendency to aggregate, with a subsequent deactivation of their emission features. Hence, there has been a fast development of aggregation induced emission (AIE) emitters, in which non-radiative motional deactivation is inhibited. However, a fine control of their colloidal properties governing the emitting performance is fundamental for their application in thin film optoelectronics. In addition, ion-based lighting devices, such as light emitting electrochemical cells (LECs), requires the design of ionic AIE emitters, whose structure allows (i) an easy ion polarizability to assist charge injection and (ii) a reversible electrochemical behavior. To date, these fundamental questions have not been addressed. Herein, the hydrophilic/hydrophobic balance of a family of cationic tetraphenyl ethene (TPE) derivatives is finely tuned by chemical design. The hydrophilic yet repulsive effect of pyridinium-based cationic moieties is balanced with hydrophobic variables (long alkyl chains or counterion chemistry), leading to (i) a control between monomeric/aggregate state ruling photoluminescence, (ii) redox behavior, and (iii) enhanced ion conductivity in thin films. This resulted in a LEC enhancement with the first ionic AIE emitters, reaching values of 0.19 lm W-1 at ca. 50 cd m-2. Overall, this design rule will be key to advance ionic active species for optoelectronics.

2.
Chem Commun (Camb) ; 59(99): 14701-14704, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997149

RESUMO

The co-assembly of lipids and other compounds has recently gained increasing interest. Here, we report the formation of stimuli-responsive lipid-DNA origami fibers through the electrostatic co-assembly of cationic lipids and 6-helix bundle (6HB) DNA origami. The photosensitive lipid degrades when exposed to UV-A light, which allows a photoinduced, controlled release of the 6HBs from the fibers. The presented complexation strategy may find uses in developing responsive nanomaterials e.g. for therapeutics.


Assuntos
Nanoestruturas , Conformação de Ácido Nucleico , Nanoestruturas/química , DNA/química , Eletricidade Estática , Lipídeos/química , Nanotecnologia
4.
J Mater Chem B ; 11(48): 11544-11551, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37990925

RESUMO

Morpheeins are proteins that adapt their morphology and function to the environment. Therefore, their use in nanotechnology opens up the bottom-up preparation of anisotropic metamaterials, based on the sequential use of different stimuli. A prominent member of this family of proteins is peroxiredoxins (Prx), with dual peroxidase and chaperone function, depending on the pH of the media. At high pH, they show a toroidal morphology that turns into tubular stacks upon acidification. While the toroidal conformers have been explored as building blocks to yield 1D and 2D structures, the obtention of higher ordered materials remain unexplored. In this research, the morpheein behaviour of Prx is exploited to yield columnar aggregates, that are subsequently self-assembled into 3D anisotropic bundles. This is achieved by electrostatic recognition between the negatively charged protein rim and a positively charged porphyrin acting as molecular glue. The subsequent and orthogonal input lead to the alignment of the monodimensional stacks side-by-side, leading to the precise assembly of this anisotropic materials.


Assuntos
Peroxidase , Peroxirredoxinas , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Eletricidade Estática , Peroxidase/metabolismo , Nanotecnologia , Concentração de Íons de Hidrogênio
5.
ACS Nano ; 17(21): 21206-21215, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37902649

RESUMO

The application of fluorescent proteins (FPs) in optoelectronics is hindered by the need for effective protocols to stabilize them under device preparation and operational conditions. Factors such as high temperatures, irradiation, and organic solvent exposure contribute to the denaturation of FPs, resulting in a low device performance. Herein, we focus on addressing the photoinduced heat generation associated with FP motion and rapid heat transfer. This leads to device temperatures of approximately 65 °C, causing FP-denaturation and a subsequent loss of device functionality. We present a FP stabilization strategy involving the integration of electrostatically self-assembled FP-apoferritin cocrystals within a silicone-based color down-converting filter. Three key achievements characterize this approach: (i) an engineering strategy to design positively supercharged FPs (+22) without compromising photoluminescence and thermal stability compared to their native form, (ii) a carefully developed crystallization protocol resulting in highly emissive cocrystals that retain the essential photoluminescence features of the FPs, and (iii) a strong reduction of the device's working temperature to 40 °C, leading to a 40-fold increase in Bio-HLEDs stability compared to reference devices.

6.
Nat Nanotechnol ; 18(10): 1205-1212, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460794

RESUMO

Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA-DNA origami structures to pave way for next-generation cargo protection and targeting strategies.


Assuntos
Capsídeo , Nanoestruturas , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/química , Nanoestruturas/química , DNA/química , Vírion
7.
Adv Sci (Weinh) ; 10(16): e2300069, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37013464

RESUMO

Stable and efficient high-power biohybrid light-emitting diodes (Bio-HLEDs) using fluorescent proteins (FPs) in photon downconverting filters have not been achieved yet, reaching best efficiencies of 130 lm W-1 stable for >5 h. This is related to the rise of the device temperature (70-80 °C) caused by FP-motion and quick heat-transmission in water-based filters, they lead to a strong thermal emission quenching followed by the quick chromophore deactivation via photoinduced H-transfer. To tackle both issues at once, this work shows an elegant concept of a new FP-based nanoparticle, in which the FP core is shielded by a SiO2 -shell (FP@SiO2 ) with no loss of the photoluminescence figures-of-merit over years in foreign environments: dry powder at 25 °C (ambient) or constant 50 °C, as well as suspensions in organic solvents. This enables the preparation of water-free photon downconverting coatings with FP@SiO2 , realizing on-chip high-power Bio-HLEDs with 100 lm W-1 stable for >120 h. Both thermal emission quenching and H-transfer deactivation are suppressed, since the device temperature holds <40 °C and remote high-power Bio-HLEDs exhibit final stabilities of 130 days compared to reference devices with water-based FP@SiO2 (83 days) and FP-polymer coatings (>100 h). Hence, FP@SiO2 is a new paradigm toward water-free zero-thermal-quenching biophosphors for first-class high-power Bio-HLEDs.

8.
Nat Commun ; 14(1): 2141, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059703

RESUMO

The limited diversity in targets of available antibiotic therapies has put tremendous pressure on the treatment of bacterial pathogens, where numerous resistance mechanisms that counteract their function are becoming increasingly prevalent. Here, we utilize an unconventional anti-virulence screen of host-guest interacting macrocycles, and identify a water-soluble synthetic macrocycle, Pillar[5]arene, that is non-bactericidal/bacteriostatic and has a mechanism of action that involves binding to both homoserine lactones and lipopolysaccharides, key virulence factors in Gram-negative pathogens. Pillar[5]arene is active against Top Priority carbapenem- and third/fourth-generation cephalosporin-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, suppressing toxins and biofilms and increasing the penetration and efficacy of standard-of-care antibiotics in combined administrations. The binding of homoserine lactones and lipopolysaccharides also sequesters their direct effects as toxins on eukaryotic membranes, neutralizing key tools that promote bacterial colonization and impede immune defenses, both in vitro and in vivo. Pillar[5]arene evades both existing antibiotic resistance mechanisms, as well as the build-up of rapid tolerance/resistance. The versatility of macrocyclic host-guest chemistry provides ample strategies for tailored targeting of virulence in a wide range of Gram-negative infectious diseases.


Assuntos
Acinetobacter baumannii , Pseudomonas aeruginosa , Homosserina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Lactonas/farmacologia , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
9.
Chemistry ; 29(27): e202202022, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37060224

RESUMO

Our recent publication in Chem. Eur. J. 2022, 28, e202104341 has inspired Prof. Peter B. Crowley (P.C.) to write a Correspondence questioning the presented concept of electrostatic self-assembly. The offered criticism is twofold: 1) the role of the cationic pillar[5]arene macrocycle to act as molecular glue in the formation of electrostatically driven protein assemblies is questioned by arguing that the pillararene is not incorporated into the frameworks. 2) Later, P.C. speculates that when the frameworks form, the role of electrostatic interactions is not firmly established and cation-pi bonding is the more plausible interaction. In this response, the raised comments are addressed. We present direct experimental NMR evidence showing that the pillar[5]arene is incorporated into the frameworks. Furthermore, we discuss the electrostatic self-assembly and our ferritin-related research line more broadly and clarify the role of key experiments.

10.
Angew Chem Int Ed Engl ; 61(42): e202209033, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35876617

RESUMO

Phthalocyanines are important organic dyes with a broad applicability in optoelectronics, catalysis, sensing and nanomedicine. Currently, phthalocyanines are synthetized in high boiling organic solvents, like dimethylaminoethanol (DMAE), which is a flammable, corrosive, and bioactive substance, miscible with water and harmful to the environment. Here we show a new solid-state approach for the high-yielding synthesis of phthalocyanines, which reduces up to 100-fold the amount of DMAE. Through systematic screening of solid-state reaction parameters, carried out by ball-milling and aging, we reveal the influence of key variables-temperature, presence of a template, and the amount and role of DMAE in the conversion of tBu phthalonitrile to tetra-tBu phthalocyanine. These results set the foundations to synthesize these high-performance dyes through a greener approach, opening the field of solid-state synthesis to a wider family of phthalocyanines.


Assuntos
Cáusticos , Deanol , Corantes , Indóis , Isoindóis , Solventes , Água
11.
Chemistry ; 28(11): e202200343, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35179246

RESUMO

Invited for the cover of this issue are Mauri A. Kostiainen and co-workers at Aalto and Oakland Universities. The image depicts two ferritin protein cages joined by a cationic pillararene hosting a guest dye. Read the full text of the article at 10.1002/chem.202104341.


Assuntos
Ferritinas , Humanos
12.
Chemistry ; 28(11): e202104341, 2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35043998

RESUMO

Supramolecular self-assembly of biomolecules provides a powerful bottom-up strategy to build functional nanostructures and materials. Among the different biomacromolecules, protein cages offer various advantages including uniform size, versatility, multi-modularity, and high stability. Additionally, protein cage crystals present confined microenvironments with well-defined dimensions. On the other hand, molecular hosts, such as cyclophanes, possess a defined cavity size and selective recognition of guest molecules. However, the successful combination of macrocycles and protein cages to achieve functional co-crystals has remained limited. In this study, we demonstrate electrostatic binding between cationic pillar[5]arenes and (apo)ferritin cages that results in porous and crystalline frameworks. The electrostatically assembled crystals present a face-centered cubic (FCC) lattice and have been characterized by means of small-angle X-ray scattering and cryo-TEM. These hierarchical structures result in a multiadsorbent framework capable of hosting both organic and inorganic pollutants, such as dyes and toxic metals, with potential application in water-remediation technologies.


Assuntos
Nanoestruturas , Ferritinas/química , Nanoestruturas/química , Porosidade , Eletricidade Estática , Água/química
13.
Bioconjug Chem ; 32(6): 1123-1129, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34029458

RESUMO

Design and synthesis of novel photosensitizer architectures is a key step toward new multifunctional molecular materials. Photoactive Janus-type molecules provide interesting building blocks for such systems by presenting two well-defined chemical functionalities that can be utilized orthogonally. Herein a multifunctional phthalocyanine is reported, bearing a bulky and positively charged moiety that hinders their aggregation while providing the ability to adhere on DNA origami nanostructures via reversible electrostatic interactions. On the other hand, triethylene glycol moieties render a water-soluble and chemically inert corona that can stabilize the structures. This approach provides insight into the molecular design and synthesis of Janus-type sensitizers that can be combined with biomolecules, rendering optically active biohybrids.


Assuntos
DNA/química , Indóis/química , Nanotecnologia , Isoindóis , Luz , Nanoestruturas/química , Conformação de Ácido Nucleico , Eletricidade Estática
14.
Adv Healthc Mater ; 10(1): e2001162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33124183

RESUMO

The strategy of combining biomolecules and synthetic components to develop biohybrids is becoming increasingly popular for preparing highly customized and biocompatible functional materials. Carbon nanotubes (CNTs) benefit from bioconjugation, allowing their excellent properties to be applied to biomedical applications. This study reviews the state-of-the-art research in biomolecule-CNT conjugates and discusses strategies for their self-assembly into hierarchical structures. The review focuses on various highly ordered structures and the interesting properties resulting from the structural order. Hence, CNTs conjugated with the most relevant biomolecules, such as nucleic acids, peptides, proteins, saccharides, and lipids are discussed. The resulting well-defined composites allow the nanoscale properties of the CNTs to be exploited at the micro- and macroscale, with potential applications in tissue engineering, sensors, and wearable electronics. This review presents the underlying chemistry behind the CNT-based biohybrid materials and discusses the future directions of the field.


Assuntos
Nanotubos de Carbono , Materiais Biocompatíveis , Eletrônica , Proteínas , Engenharia Tecidual
15.
Angew Chem Int Ed Engl ; 59(42): 18786-18794, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32652750

RESUMO

In the scientific race to build up photoactive electron donor-acceptor systems with increasing efficiencies, little is known about the interplay of their building blocks when integrated into supramolecular nanoscale arrays, particularly in aqueous environments. Here, we describe an aqueous donor-acceptor ensemble whose emergence as a nanoscale material renders it remarkably stable and efficient. We have focused on a tetracationic zinc phthalocyanine (ZnPc) featuring pyrenes, which shows an unprecedented mode of aggregation, driven by subtle cooperation between electrostatic and π-π interactions. Our studies demonstrate monocrystalline growth in solution and a symmetry-breaking intermolecular charge transfer between adjacent ZnPcs upon photoexcitation. Immobilizing a negatively charged fullerene (C60 ) as electron acceptor onto the monocrystalline ZnPc assemblies was found to enhance the overall stability, and to suppress the energy-wasting charge recombination found in the absence of C60 . Overall, the resulting artificial photosynthetic model system exhibits a high degree of preorganization, which facilitates efficient charge separation and subsequent charge transport.

16.
Chem Commun (Camb) ; 56(53): 7341-7344, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32483566

RESUMO

In this communication, electrostatically assembled phthalocyanine (Pc)-DNA origami (DO) complexes are formed and their optical properties are demonstrated. The formation of the complex prevents the Pc aggregation, thus yielding an enhanced optical response and photooxidative resilience towards aggregation in biologically relevant media. Simultaneously, the Pc protects the DO against enzymatic digestion. Both features solve previous drawbacks associated with phthalocyanine photosensitizers and DNA nanocarriers. The studied complexes may find use in technologies related to the photogeneration of singlet oxygen, e.g., photocatalysis, diagnositic arrays and photodynamic therapy.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Indóis/química , Nanocápsulas/química , Fármacos Fotossensibilizantes/química , Humanos , Isoindóis , Oxidantes Fotoquímicos/química , Fotoquimioterapia , Oxigênio Singlete/química , Eletricidade Estática , Relação Estrutura-Atividade
17.
Artigo em Inglês | MEDLINE | ID: mdl-31414574

RESUMO

Protein capsids are specialized and versatile natural macromolecules with exceptional properties. Their homogenous, spherical, rod-like or toroidal geometry, and spatially directed functionalities make them intriguing building blocks for self-assembled nanostructures. High degrees of functionality and modifiability allow for their assembly via non-covalent interactions, such as electrostatic and coordination bonding, enabling controlled self-assembly into higher-order structures. These assembly processes are sensitive to the molecules used and the surrounding conditions, making it possible to tune the chemical and physical properties of the resultant material and generate multifunctional and environmentally sensitive systems. These materials have numerous potential applications, including catalysis and drug delivery. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.


Assuntos
Materiais Biocompatíveis , Nanoestruturas , Proteínas , Proteínas do Capsídeo , Sistemas de Liberação de Medicamentos , Ferritinas , Modelos Moleculares , Multimerização Proteica , Eletricidade Estática
18.
Adv Mater ; 31(39): e1902582, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31392780

RESUMO

The generation of highly reactive oxygen species (ROS) at room temperature for application in organic synthesis and wastewater treatment represents a great challenge of the current chemical industry. In fact, the development of biodegradable scaffolds to support ROS-generating active sites is an important prerequisite for the production of environmentally benign catalysts. Herein, the electrostatic cocrystallization of a cationic phthalocyanine (Pc) and negatively charged tobacco mosaic virus (TMV) is described, together with the capacity of the resulting crystals to photogenerate ROS. To this end, a novel peripherally crowded zinc Pc (1) is synthesized. With 16 positive charges, this photosensitizer shows no aqueous aggregation, and is able to act as a molecular glue in the unidimensional assembly of TMV. A step-wise decrease of ionic strength in mixtures of both components results in exceptionally long fibers, constituted by hexagonally bundled viruses thoroughly characterized by electron and confocal microscopy. The fibers are able to produce ROS in a proof-of-concept microfluidic device, where they are immobilized and irradiated in several cycles, showing a resilient performance. The bottom-up approach also enables the light-triggered disassembly of fibers after use. This work represents an important example of a biohybrid material with projected application in light-mediated heterogeneous catalysis.

19.
Chem Soc Rev ; 47(19): 7369-7400, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30152500

RESUMO

The development of photoactive and biocompatible nanomaterials is a current major challenge of materials science and nanotechnology, as they will contribute to promoting current and future biomedical applications. A growing strategy in this direction consists of using biologically inspired hybrid materials to maintain or even enhance the optical properties of chromophores and fluorophores in biological media. Within this area, porphyrinoids constitute the most important family of organic photosensitizers. The following extensive review will cover their incorporation into different kinds of photosensitizing biohybrid materials, as a fundamental research effort toward the management of light for biomedical use, including technologies such as photochemical internalization (PCI), photoimmunotherapy (PIT), and theranostic combinations of fluorescence imaging and photodynamic therapy (PDT) or photodynamic inactivation (PDI) of microorganisms.


Assuntos
Materiais Biocompatíveis , Fármacos Fotossensibilizantes/química , Porfirinas/química , Animais , Humanos , Imunoterapia/métodos , Nanomedicina , Imagem Óptica , Fotoquimioterapia , Nanomedicina Teranóstica
20.
Chemistry ; 23(18): 4320-4326, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28097714

RESUMO

The development of photoactive and biocompatible nanostructures is a highly desirable goal to address the current threat of antibiotic resistance. Here, we describe a novel supramolecular biohybrid nanostructure based on the non-covalent immobilization of cationic zinc phthalocyanine (ZnPc) derivatives onto unmodified cellulose nanocrystals (CNC), following an easy and straightforward protocol, in which binding is driven by electrostatic interactions. These non-covalent biohybrids show strong photodynamic activity against S. aureus and E. coli, representative examples of Gram-positive and Gram-negative bacteria, respectively, and C. albicans, a representative opportunistic fungal pathogen, outperforming the free ZnPc counterparts and related nanosystems in which the photosensitizer is covalently linked to the CNC surface.


Assuntos
Celulose/química , Indóis/química , Nanopartículas/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Candida albicans/efeitos dos fármacos , Cátions/química , Microscopia Crioeletrônica , Difusão Dinâmica da Luz , Escherichia coli/efeitos dos fármacos , Isoindóis , Luz , Tamanho da Partícula , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...