Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Temperature (Austin) ; 11(2): 110-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846522

RESUMO

Seasonal acclimatization is known to result in adaptations that can improve heat tolerance. Staff who operate on burn injuries are exposed to thermally stressful conditions and seasonal acclimatization may improve their thermoeffector responses during surgery. Therefore, the aim of this study was to assess the physiological and perceptual responses of staff who operate on burn injuries during summer and winter, to determine whether they become acclimatized to the heated operating theater. Eight staff members had physiological and perceptual responses compared during burn surgeries conducted in thermoneutral (CON: 24.1 ± 1.2°C, 45 ± 7% relative humidity [RH]) and heated (HOT: 31.3 ± 1.6°C, 44 ± 7% RH) operating theaters, in summer and winter. Physiological parameters that were assessed included core temperature, heart rate, total sweat loss, sweat rate, and urinary specific gravity. Perceptual responses included ratings of thermal sensation and comfort. In summer, CON compared to winter CON, baseline (85 ± 15 bpm VS 94 ± 18 bpm), mean (84 ± 16 bpm VS 93 ± 18 bpm), and peak HR (94 ± 17 bpm VS 105 ± 19 bpm) were lower (p < 0.05), whereas core temperature was not different between seasons in either condition (p > 0.05). In HOT, ratings of discomfort were higher in summer (15 ± 3) than winter (13 ± 3; p > 0.05), but ratings of thermal sensation and sweat rate were similar between seasons (p > 0.05). The surgical team in burns in Western Australia can obtain some of the physiological adaptations that result from seasonal acclimatization, but not all. That is most likely due to a lower than required amount of outdoor heat exposure in summer, to induce all physiological and perceptual adaptations.

2.
Eur J Sport Sci ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874584

RESUMO

We examine the impact of the acute manipulation of oxygen availability during discrete phases (active and passive) of a repeated-sprint cycling protocol on performance, physiological, and perceptual responses. On separate days, twelve trained males completed four sets of five 5-s 'all out' cycle sprints (25-s inter-sprint recovery and 5-min interset rest) in four randomized conditions: normobaric hypoxia (inspired oxygen fraction of 12.9%) applied continuously (C-HYP), intermittently during only the sets of sprints (I-HYPSPRINT) or between-sets recovery periods (I-HYPRECOVERY), or not at all (C-NOR). Peak and mean power output, peripheral oxygen saturation, heart rate, blood lactate concentration, exercise-related sensations, and vastus lateralis muscle oxygenation using near-infrared spectroscopy were assessed. Peak and mean power output was ∼4%-5% lower for C-HYP compared to C-NOR (P ≤ 0.050) and I-HYPRECOVERY (P ≤ 0.027). Peripheral oxygen saturation was lower during C-HYP and I-HYPSPRINT compared with C-NOR and I-HYPRECOVERY during sets of sprints (∼83-85 vs. ∼95%-97%; P < 0.001), while lower values were obtained for C-HYP and I-HYPRECOVERY than C-NOR and I-HYPSPRINT during between-sets rest period (∼84-85 vs. ∼96%; P < 0.001). Difficulty in breathing was ∼21% higher for C-HYP than C-NOR (P = 0.050). Ratings of perceived exertion (P = 0.435), limb discomfort (P = 0.416), heart rate (P = 0.605), blood lactate concentration (P = 0.976), and muscle oxygenation-derived variables (P = 0.056 to 0.605) did not differ between conditions. In conclusion, the method of hypoxic exposure application (continuous vs. intermittent) affects mechanical performance, while internal demands remained essentially comparable during repeated cycle sprints.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...