Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 227(1)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38469622

RESUMO

Design randomizations and spatial corrections have increased understanding of genotypic, spatial, and residual effects in field experiments, but precisely measuring spatial heterogeneity in the field remains a challenge. To this end, our study evaluated approaches to improve spatial modeling using high-throughput phenotypes (HTP) via unoccupied aerial vehicle (UAV) imagery. The normalized difference vegetation index was measured by a multispectral MicaSense camera and processed using ImageBreed. Contrasting to baseline agronomic trait spatial correction and a baseline multitrait model, a two-stage approach was proposed. Using longitudinal normalized difference vegetation index data, plot level permanent environment effects estimated spatial patterns in the field throughout the growing season. Normalized difference vegetation index permanent environment were separated from additive genetic effects using 2D spline, separable autoregressive models, or random regression models. The Permanent environment were leveraged within agronomic trait genomic best linear unbiased prediction either modeling an empirical covariance for random effects, or by modeling fixed effects as an average of permanent environment across time or split among three growth phases. Modeling approaches were tested using simulation data and Genomes-to-Fields hybrid maize (Zea mays L.) field experiments in 2015, 2017, 2019, and 2020 for grain yield, grain moisture, and ear height. The two-stage approach improved heritability, model fit, and genotypic effect estimation compared to baseline models. Electrical conductance and elevation from a 2019 soil survey significantly improved model fit, while 2D spline permanent environment were most strongly correlated with the soil parameters. Simulation of field effects demonstrated improved specificity for random regression models. In summary, the use of longitudinal normalized difference vegetation index measurements increased experimental accuracy and understanding of field spatio-temporal heterogeneity.


Assuntos
Zea mays , Zea mays/genética , Fenótipo , Modelos Genéticos , Análise Espaço-Temporal , Genoma de Planta , Genômica/métodos , Genótipo , Característica Quantitativa Herdável
2.
Theor Appl Genet ; 133(10): 2853-2868, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32613265

RESUMO

KEY MESSAGE: Heritable variation in phenotypes extracted from multi-spectral images (MSIs) and strong genetic correlations with end-of-season traits indicates the value of MSIs for crop improvement and modeling of plant growth curve. Vegetation indices (VIs) derived from multi-spectral imaging (MSI) platforms can be used to study properties of crop canopy, providing non-destructive phenotypes that could be used to better understand growth curves throughout the growing season. To investigate the amount of variation present in several VIs and their relationship with important end-of-season traits, genetic and residual (co)variances for VIs, grain yield and moisture were estimated using data collected from maize hybrid trials. The VIs considered were Normalized Difference Vegetation Index (NDVI), Green NDVI, Red Edge NDVI, Soil-Adjusted Vegetation Index, Enhanced Vegetation Index and simple Ratio of Near Infrared to Red (Red) reflectance. Genetic correlations of VIs with grain yield and moisture were used to fit multi-trait models for prediction of end-of-season traits and evaluated using within site/year cross-validation. To explore alternatives to fitting multiple phenotypes from MSI, random regression models with linear splines were fit using data collected in 2016 and 2017. Heritability estimates ranging from (0.10 to 0.82) were observed, indicating that there exists considerable amount of genetic variation in these VIs. Furthermore, strong genetic and residual correlations of the VIs, NDVI and NDRE, with grain yield and moisture were found. Considerable increases in prediction accuracy were observed from the multi-trait model when using NDVI and NDRE as a secondary trait. Finally, random regression with a linear spline function shows potential to be used as an alternative to mixed models to fit VIs from multiple time points.


Assuntos
Modelos Genéticos , Fenótipo , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Grão Comestível , Genótipo , Sementes/crescimento & desenvolvimento
3.
G3 (Bethesda) ; 8(11): 3549-3558, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30194089

RESUMO

Implicit assumption of common (co)variance for all loci in multi-trait Genomic Best Linear Unbiased Prediction (GBLUP) results in a genomic relationship matrix (G) that is common to all traits. When this assumption is violated, Bayesian whole genome regression methods may be superior to GBLUP by accounting for unequal (co)variance for all loci or genome regions. This study aimed to develop a strategy to improve the accuracy of GBLUP for multi-trait genomic prediction, using (co)variance estimates of SNP effects from Bayesian whole genome regression methods. Five generations (G1-G5, test populations) of genotype data were available by simulations based on data of 2,200 Danish Holstein cows (G0, reference population). Two correlated traits with heritabilities of 0.1 or 0.4, and a genetic correlation of 0.45 were generated. First, SNP effects and breeding values were estimated using BayesAS method, assuming (co)variance was the same for SNPs within a genome region, and different between regions. Region size was set as one SNP, 100 SNPs, a whole chromosome or whole genome. Second, posterior (co)variances of SNP effects were used to weight SNPs in construction of G matrices. In general, region size of 100 SNPs led to highest prediction accuracies using BayesAS, and wGBLUP outperformed GBLUP at this region size. Our results suggest that when genetic architectures of traits favor Bayesian methods, the accuracy of multi-trait GBLUP can be as high as the Bayesian method if SNPs are weighted by the Bayesian posterior (co)variances.


Assuntos
Bovinos/genética , Modelos Genéticos , Animais , Teorema de Bayes , Feminino , Genômica/métodos , Genótipo , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
Genet Sel Evol ; 47: 85, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26537023

RESUMO

BACKGROUND: Genetic selection of livestock against infectious diseases can complement existing interventions to control infectious diseases. Most genetic approaches that aim at reducing disease prevalence assume that individual disease status (infected/not-infected) is solely a function of its susceptibility to a particular pathogen. However, individual infectivity also affects the risk and prevalence of an infection in a population. Variation in susceptibility and infectivity between hosts affects transmission of an infection in the population, which is usually measured by the value of the basic reproduction ratio R 0 . R 0 is an important epidemiological parameter that determines the risk and prevalence of infectious diseases. An individual's breeding value for R 0 is a function of its genes that influence both susceptibility and infectivity. Thus, to estimate the effects of genes on R 0 , we need to estimate the effects of genes on individual susceptibility and infectivity. To that end, we developed a generalized linear model (GLM) to estimate relative effects of genes for susceptibility and infectivity. A simulation was performed to investigate bias and precision of the estimates, the effect of R 0 , the size of the effects of genes for susceptibility and infectivity, and relatedness among group mates on bias and precision. We considered two bi-allelic loci that affect, respectively, the individuals' susceptibility only and individuals' infectivity only. RESULTS: A GLM with complementary log-log link function can be used to estimate the relative effects of genes on the individual's susceptibility and infectivity. The model was developed from an equation that describes the probability of an individual to become infected as a function of its own susceptibility genotype and infectivity genotypes of all its infected group mates. Results show that bias is smaller when R 0 ranges approximately from 1.8 to 3.1 and relatedness among group mates is higher. With larger effects, both absolute and relative standard deviations become clearly smaller, but the relative bias remains the same. CONCLUSIONS: We developed a GLM to estimate the relative effect of genes that affect individual susceptibility and infectivity. This model can be used in genome-wide association studies that aim at identifying genes that influence the prevalence of infectious diseases.


Assuntos
Doenças Transmissíveis/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Modelos Genéticos , Modelos Estatísticos , Algoritmos , Animais , Doenças Transmissíveis/epidemiologia , Simulação por Computador , Heterogeneidade Genética , Estudo de Associação Genômica Ampla/métodos , Interações Hospedeiro-Patógeno , Humanos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...