Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 78: 29-41, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37793602

RESUMO

The present study used Cr(VI)-polluted microcosms amended with lactate or yeast extract, and nonamended microcosms as control, to investigate how a native bacterial community varied in response to the treatment and during the pollutant removal. Results suggested that providing electron donors resulted in a proliferation of a few bacterial species, with the consequent decrease in observed species richness and evenness, and was a driving force for the bacterial compositional shift. Lactate promoted, in the first instance, the enrichment of fermentative bacteria belonging to Chromobacteriaceae, including Paludibacterium, and Micrococcaceae as observed after 4 days. When the rate of Cr(VI) removal was maximum in microcosms amended with lactate, the most represented taxa were Pseudarcicella and Azospirillum. Using yeast extract as a carbon source and electron donor led instead to the significant enrichment of Shewanella, followed by Vogesella and Acinetobacter on the 4th day, corresponding to 90% of Cr(VI) removed from the system. After the complete Cr(VI) removal, achieved in 7 days in the presence of yeast extract, α-diversity was notably increased. The amendment-specific turnover of the enriched bacterial taxa resulted in a different kinetic of pollutant removal. In particular, yeast extract promoted the quickest Cr(VI) reduction, while lactate supported a slower, but also considerable, pollutant removal from water. Since it is reasonable to assume that a macroscopic effect, such as the observed Cr(VI) removal, involved the overrepresented taxa, deepening the knowledge of the native bacterial community and its changes were used to hypothesize the possible microbial pathways involved.


Assuntos
Poluentes Ambientais , Microbiota , Poluentes Químicos da Água , Oxirredução , Cromo , Bactérias/metabolismo , Ácido Láctico , Poluentes Químicos da Água/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35954976

RESUMO

Remediation interventions based on the native bacteria's capability to reduce Cr(VI) represent a valid strategy in terms of economic and environmental sustainability. In this study, a bioremediation test was carried out using viable microcosms set with groundwater and deep soil (4:1), collected from the saturated zone of an industrial site in Southern Italy that was polluted by ~130 µg L-1 of Cr(VI). Conditions simulating the potential natural attenuation were compared to the enhanced natural attenuation induced by supplying yeast extract or polyhydroxybutyrate. Sterile controls were set up to study the possible Cr(VI) abiotic reduction. No pollution attenuation was detected in the unamended viable reactors, whereas yeast extract provided the complete Cr(VI) removal in 7 days, and polyhydroxybutyrate allowed ~70% pollutant removal after 21 days. The incomplete abiotic removal of Cr(VI) was observed in sterile reactors amended with yeast extract, thus suggesting the essential role of native bacteria in Cr(VI) remediation. This was in accordance with the results of Pearson's coefficient test, which revealed that Cr(VI) removal was positively correlated with microbial proliferation (n = 0.724), and also negatively correlated with pH (n = -0.646), dissolved oxygen (n = -0.828) and nitrate (n = -0.940). The relationships between the Cr(VI) removal and other monitored parameters were investigated by principal component analysis, which explained 76.71% of the total variance.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Biodegradação Ambiental , Cromo/análise , Elétrons , Água Subterrânea/microbiologia , Poluentes Químicos da Água/análise
3.
Plants (Basel) ; 11(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35567183

RESUMO

In agriculture, biochar (B) application has been suggested as a green technology to reduce nitrate pollution from agricultural origins and improve crop yield. The agronomic impact of B use on soil has been extensively studied, while knowledge of its possible effects on horticultural cultivation is still scarce. A greenhouse experiment was conducted to evaluate the effect of using biochar in soils treated with two different rates of nitrogen fertilizers on soil properties and nitrogen (N) leachate. This study also investigated the vegetative parameters during the crop growing season of Brassica oleracea L. var. botrytis. Soil mesocosms were set up to test the following treatments: untreated/control (C); normal dose of N fertilizer (130 kg N ha-1) (ND); ND+B; high dose of N fertilizer (260 kg N ha-1) (HD); and HD+B. Principal component analysis and cluster analysis were exploited to assess biochar's ability to reduce nitrate leaching and enhance soil-vegetative properties. Biochar addition affected the soil chemical properties of the fertilized microcosms (ND and HD). Biochar increased the NH4+ content in HD soil and the NO3- content in ND soil by 26 mg/L and 48.76 mg/L, respectively. The results showed that biochar application increased the marketable cauliflower yield. In ND+B and HD+B, the curd weight was 880.68 kg and 1097.60 kg, respectively. In addition, a small number of nitrogenous compounds in the leachate were quantified in experimental lines with the biochar. Therefore, biochar use improves the marketable yield of horticulture, mitigating the negative impacts associated with the mass use of N fertilizers in agriculture.

4.
Sci Total Environ ; 805: 150431, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818779

RESUMO

Research on microplastics (MPs) in the terrestrial environment is currently at a still embryonal stage. The current knowledge concerning poorly known diffuse sources of MPs pollution in terrestrial ecosystems have been considered in this work. In addition, a particular focus on the presence, mechanism of absorption and effects of MPs in plants has also been provided. Research concerning microplastics in urban areas and their intake by Tyre and Road Wear Particulates (TWRP) demonstrated a high contribution of this plastic debris to microplastic pollution, although quantification of these inputs is challenging to assess because studies are still very few. Around 50% of particles are expected to remain in the roadside soil, while the rest is transported away by the runoff with high concentrations of TRWP with a size ranging between 0.02 and 0.1 mm. Natural and anthropic environments like temporary ponds, stormwater retention ponds and small waterbodies were considered sensitive connecting ecosystems rich in biodiversity between terrestrial and aquatic environments. Even if studies are not yet exhaustive and just eight studies were currently published concerning these ecosystems, considerable values of MPs were already observed both in the sediment and water phase of ponds. Although still poorly explored, agricultural environments were already demonstrated to hide a significant number of microplastics linked mainly to agricultural activities and practices (e.g. mulch, sewage and compost fertilisation). However, the microplastics transportation processes into the soil are still understudied, and a few works are available. Microplastics and primarily nanoplastics presence was also observed in common edible plants (fruit and vegetables) with alarming Estimated Daily Intakes ranging from 2.96 × 1004 to 4.62 × 1005 (p kg-1 day-1) for adults depending on species. In addition, adverse effects on plants growth, photosynthetic activity, antioxidant system and nutritional values of several common fruits and vegetables were also demonstrated by several studies.


Assuntos
Microplásticos , Plásticos , Ecossistema , Poluição Ambiental , Solo
5.
Front Microbiol ; 11: 2073, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983051

RESUMO

Due to their widespread use in industrial applications in recent decades, Polychlorobiphenyls (PCBs) and heavy metals (HMs) are the most common soil contaminants worldwide, posing a risk for both ecosystems and human health. In this study, a poplar-assisted bioremediation strategy has been applied for more than 4 years to a historically contaminated area (PCBs and HMs) in Southern Italy using the Monviso poplar clone. This clone was effective in promoting a decrease in all contaminants and an increase in soil quality in terms of organic carbon and microbial abundance. Moreover, a significant shift in the structure and predicted function of the belowground microbial community was also observed when analyzing both DNA and cDNA sequencing data. In fact, an increase in bacterial genera belonging to Proteobacteria able to degrade PCBs and resist HMs was observed. Moreover, the functional profiling of the microbial community predicted by PICRUSt2 made it possible to identify several genes associated with PCB transformation (e.g., bphAa, bphAb, bphB, bphC), response to HM oxidative stress (e.g., catalase, superoxide reductase, peroxidase) and HM uptake and expulsion (e.g., ABC transporters). This work demonstrated the effectiveness of the poplar clone Monviso in stimulating the natural belowground microbial community to remove contaminants and improve the overall soil quality. It is a practical example of a nature based solution involving synergic interactions between plants and the belowground microbial community.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32731582

RESUMO

Chromium is a potentially toxic metal occurring in water and groundwater as a result of natural and anthropogenic sources. Microbial interaction with mafic and ultramafic rocks together with geogenic processes release Cr (VI) in natural environment by chromite oxidation. Moreover, Cr (VI) pollution is largely related to several Cr (VI) industrial applications in the field of energy production, manufacturing of metals and chemicals, and subsequent waste and wastewater management. Chromium discharge in European Union (EU) waters is subjected to nationwide recommendations, which vary depending on the type of industry and receiving water body. Once in water, chromium mainly occurs in two oxidation states Cr (III) and Cr (VI) and related ion forms depending on pH values, redox potential, and presence of natural reducing agents. Public concerns with chromium are primarily related to hexavalent compounds owing to their toxic effects on humans, animals, plants, and microorganisms. Risks for human health range from skin irritation to DNA damages and cancer development, depending on dose, exposure level, and duration. Remediation strategies commonly used for Cr (VI) removal include physico-chemical and biological methods. This work critically presents their advantages and disadvantages, suggesting a site-specific and accurate evaluation for choosing the best available recovering technology.


Assuntos
Cromo/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Animais , Cromo/toxicidade , Monitoramento Ambiental , Recuperação e Remediação Ambiental , Água Subterrânea , Humanos , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/toxicidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-31973238

RESUMO

A laboratory-scale study was carried out to evaluate the groundwater bioremediation potential of hexavalent chromium (Cr(VI)), taking into account the chromate pollution of an industrial site located in Southern Italy (Apulia Region). The reduction of Cr(VI) was studied on laboratory microcosms, set up in different experimental conditions, namely: ABIO (soil and water sterilized), BIO (soil and water not sterilized), LATT (with the addition of lactate), and YE (with the addition of yeast extract). Control test lines, set up by using sterilized matrices and amendments, were employed to assess the occurrence of the pollutant reduction via chemical processes. By combining molecular (microbial abundance, specific chromate reductase genes (ChR) and the Shewanella oinedensis bacterial strain) with chemical analyses of chromium (VI and III) in the matrices (water and soil) of each microcosm, it was possible to investigate the response of microbial populations to different experimental conditions, and therefore, to assess their bioremediation capability in promoting Cr(VI) reduction. The overall results achieved within this work evidenced the key role of amendments (lactate and yeast extract) in enhancing the biological reduction of hexavalent chromium in the contaminated aqueous phase of laboratory microcosms. The highest value of Cr(VI) removal (99.47%) was obtained in the YE amended microcosms at seven days.


Assuntos
Biodegradação Ambiental , Cromo/metabolismo , Ácido Láctico , Microbiologia do Solo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Água Subterrânea/química , Itália , Oxirredução , Solo , Leveduras
8.
J Environ Manage ; 239: 137-141, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30897479

RESUMO

Remediation of polluted soils using phytoremediation techniques is an effective strategy. However, the use of the biomass from these soils for energy purposes may raise efficiency and pollution emission problems and there is currently little research on this issue. In this work, the main results of a fluidized-bed gasification treatment conducted on poplar biomass pruning residues from a multi-contaminated area are presented. The samples were collected from an experimental site in which a plant-assisted bioremediation (PABR) technology has been applied since 2013 to reduce the soil heavy metal (HM) and polychlorinated biphenyl (PCB) contents. The main goal of this study was to identify the specific treatment necessary, in addition to conventional tar reforming, for trapping possible residues of HMs and PCBs in ashes during the gasification process. In our study, we demonstrate that gasification of contaminated biomass coming from PABR (where contaminant residues are concentrated mainly in the roots and are insignificant in the shoots) produces syngas whose characteristics are similar to those obtained using non-contaminated biomass. The results showed that contaminant concentrations in the prunings were negligible; the total amount of PCBs was 1.63 ng/g, while HMs ranged from 0.01 to 0.70 mg/kg, except for Cu and Zn (∼20 mg/kg). Furthermore, the presence in the biomass of Ca and traces of other metals showed a possible catalytic effect with an improvement in the tar conversion in the gasifier leading to a reduction of 5-10% in tar content. The overall results suggest that a specific treatment for pollutant capture is necessary only when the roots, the part of the plants where these contaminants are concentrated, are sampled and used for the gasification process. Although energy from biomass produced on a contaminated site is currently considered waste and involves disposal costs, this paper shows that the poplar biomass grown on a multi-contaminated soil can be used for energy purposes without any impact on the environment.


Assuntos
Populus , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Solo
9.
Environ Sci Pollut Res Int ; 25(29): 28760-28771, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29484623

RESUMO

Indoor air pollution assessment in work environments remains challenging due to a combination of logistic reasons and availability of costly instrumentation for data acquisition and post-processing. Existing literature focuses on energy production environments, hospitals, and less so on food production spaces. Studies on indoor air quality in bakeries are scarce or even absent. Motivated by this, the present study investigates indoor air quality in a bakery located in Bari province in South Italy, using a combination of approaches including analytical chemistry analyses and computational fluid dynamics to reconstruct the air ventilation in response to air temperature gradients within the working environment. PM2.5 indoor samplings were collected every 6 h from 7 to 19 April 2013 in the proximity of two bakery ovens powered by gas and wood, respectively. For each sampling day, 4 PM2.5 samples were collected: from 3:00 to 9:00 h (first), from 9:00 to 13:30 h (second), from 14:00 to 21:00 h (third), and from 21:00 to 3:00 h (fourth). In total, 40 samples were collected. On each sample, several polycyclic aromatic hydrocarbons (PAHs) were determined such as benzo[a]anthracene (228), benzo[b]fluoranthene (252), benzo[k]fluoranthene (252), benzo[a]pyrene (252), benzo[g,h,i]perylene (276), indeno[1,2,3-cd]pyrene (276), and dibenzo[a,h]anthracene (278), the main compounds of 16 priority US Environmental Protection Agency (US-EPA) PAHs in particulate phase. The PAH mean concentrations showed higher values during the first (from 3:00 to 9:00 h) and fourth (from 21:00 to 3:00 h) sampling intervals than the other two with benzo[a]pyrene mean values exceeding the Italian law limit of 1 ng/m3. Taking into account benzo[a]pyrene mean concentration for the first interval and the first plus the second one, which are the hours with the largest working activity, we have estimated that the baker and co-workers are exposed to a cancer risk of 4.3 × 10-7 and 5.8 × 10-7, respectively (these values are lower than US-EPA recommended guideline of 10-6). Our study was complemented by numerical analyses using state-of-the-art computational fluid dynamics to reconstruct at high resolution air movement from the various working places, i.e., the bakery and the selling area which were connected via a door. The numerical simulations were possible given that surface temperature using infrared thermography as well as air temperature was continuously recorded throughout the sampling acquisition. The use of this approach allowed us to estimate the transport and diffusion of benzo[a]pyrene from one area to the other thus complementing the point sampling information. Computational fluid dynamic simulation results confirm the presence of benzo[a]pyrene in the laboratory as obtained from the measurements and suggests its presence in the sales' area of the bakery with concentrations similar those found in the laboratory.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Indústria Alimentícia , Hidrocarbonetos Policíclicos Aromáticos/análise , Movimentos do Ar , Humanos , Itália , Medição de Risco , Estados Unidos , United States Environmental Protection Agency , Local de Trabalho/normas
10.
N Biotechnol ; 38(Pt B): 65-73, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-27686395

RESUMO

A plant-assisted bioremediation strategy was applied in an area located in Southern Italy, close to the city of Taranto, historically contaminated by polychlorinated biphenyls (PCBs) and heavy metals. A specific poplar clone (Monviso) was selected for its ability to promote organic pollutant degradation in the rhizosphere, as demonstrated elsewhere. Chemical and microbiological analyses were performed at the time of poplar planting in selected plots at different distances from the trunk (0.25-1m) and at different soil depths (0-20 and 20-40cm), at day 420. A significant decrease in PCB congeners and a reduction in all heavy metals was observed where the poplar trees were present. No evidence of PCB and heavy metal reduction was observed in the non poplar-vegetated soil. Microbial analyses (dehydrogenase activity, cell viability, microbial abundance) of the autochthonous microbial community showed an improvement in soil quality. In particular, microbial activity generally increased in the poplar-rhizosphere and a positive effect was observed in some cases at up to 1m distance from the trunk and up to 40cm depth. The Monviso clone was effective in promoting both a general decrease in contaminant occurrence and an increase in microbial activity in the chronically polluted area a little more than one year after planting.


Assuntos
Poluição Ambiental , Metais Pesados/metabolismo , Populus/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Itália
11.
J Hazard Mater ; 244-245: 303-10, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23270954

RESUMO

The existence of a lot of worldwide pentachlorophenol-contaminated sites has induced scientists to concentrate their effort in finding ways to degrade it. Therefore, an effective tool to decompose it from soil mixtures is needed. In this work the efficiency of the phyllomanganate birnessite (KBi) in degrading pentachlorophenol (PCP) through mechanochemical treatments was investigated. To this purpose, a synthesized birnessite and the pollutant were ground together in a high energy mill. The ground KBi-PCP mixtures and the liquid extracts were analyzed to demonstrate that mechanochemical treatments are more efficient in removing PCP than a simple contact between the synthesized birnessite and the pollutant, both in terms of time and extent. The mechanochemically induced PCP degradation mainly occurs through the formation of a surface monodentate inner-sphere complex between the phenolic group of the organic molecules and the structural Mn(IV). This is indicated by the changes induced in birnessite MnO(6) layers as a consequence of the prolonged milling with the pollutant. This mechanism includes the Mn(IV) reduction, the consequent formation of Mn(III) and new vacancies, and free Mn(2+) ions release. The PCP degradation extent is limited by the presence of chloro-substituents on the aromatic ring.


Assuntos
Óxidos/química , Pentaclorofenol/química , Poluentes do Solo/química , Catálise , Difração de Pó , Gerenciamento de Resíduos/métodos , Difração de Raios X
12.
J Hazard Mater ; 201-202: 148-54, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22178279

RESUMO

The aim of this work is to investigate the efficiency of the phyllomanganate birnessite in degrading catechol after mechanochemical treatments. A synthesized birnessite and the organic molecule were grounded together in a high energy mill and the xenobiotic-mineral surface reactions induced by the grinding treatment have been investigated by means of X-ray powder diffraction, X-ray fluorescence, thermal analysis and spectroscopic techniques as well as high-performance liquid chromatography and voltammetric techniques. If compared to the simple contact between the birnessite and the organic molecule, mechanochemical treatments have revealed to be highly efficient in degrading catechol molecules, in terms both of time and extent. Due to the two phenolic groups of catechol and the small steric hindrance of the molecule, the extent of the mechanochemically induced degradation of catechol onto birnessite surfaces is quite high. The degradation mechanism mainly occurs via a redox reaction. It implies the formation of a surface bidentate inner-sphere complex between the phenolic group of the organic molecules and the Mn(IV) from the birnessite structure. Structural changes occur on the MnO(6) layers of birnessite as due to the mechanically induced surface reactions: reduction of Mn(IV), consequent formation of Mn(III) and new vacancies, and free Mn(2+) ions production.


Assuntos
Catecóis/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Fenômenos Mecânicos , Óxidos/química , Eliminação de Resíduos/métodos , Físico-Química , Cromatografia Líquida de Alta Pressão , Análise Diferencial Térmica , Recuperação e Remediação Ambiental/métodos , Oxirredução , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Termogravimetria , Difração de Raios X
13.
Chemosphere ; 82(4): 627-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21035832

RESUMO

Mechanochemistry, a technique concerning with milling contaminated samples for prolonged times, induces massive degradation of pollutants by grinding them in ball mills with different soil components or additives. In the present study, laboratory experiments were conducted to evaluate the effect of aging on the mechanochemical efficiency of the Mn-oxide birnessite in degrading pentachlorophenol (PCP). A comparative study on an aged birnessite (KBiA), used after 3years from synthesis, and a fresh birnessite (KBiF), employed immediately after synthesis, was carried out. The differences between the two birnessites, evidenced by spectroscopic and diffractometric techniques, are mainly relative to reduction of the Mn(IV) centered at the MnO6 octahedra layers from the birnessite structure, which represent the most reactive sites for PCP degradation. The long term air drying at room temperature, by favouring reduction of Mn(IV) to Mn(III), produces an inorganic substrate that offers paucity of the less reactive sites for PCP degradation, thus reducing the oxidative potential of the KBiA. Accordingly, the more reactive fresh birnessite was employed in the experiment with a polluted soil. Adding a small amount of KBiF to soil only induces a light increase in PCP removal, probably due to the mechanically induced PCP adsorption and transformation onto clay minerals present in the soil. Besides, adding a higher dose of birnessite causes a stronger degradation of PCP.


Assuntos
Recuperação e Remediação Ambiental/métodos , Óxidos/química , Pentaclorofenol/química , Poluentes do Solo/química , Catálise , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...