Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13589, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604899

RESUMO

Autologous micrografting is a technique currently applied within skin wound healing, however, the potential use for surgical correction of other organs with epithelial lining, including the urinary bladder, remains largely unexplored. Currently, little is known about the micrograft expansion potential and the micromolecular events that occur in micrografted urothelial cells. In this study, we aimed to evaluate the proliferative potential of different porcine urothelial micrograft sizes in vitro, and, furthermore, to explore how urothelial micrografts communicate and which microcellular events are triggered. We demonstrated that increased tissue fragmentation subsequently potentiated the yield of proliferative cells and the cellular expansion potential, which confirms, that the micrografting principles of skin epithelium also apply to uroepithelium. Furthermore, we targeted the expression of the extracellular signal-regulated kinase (ERK) pathway and demonstrated that ERK activation occurred predominately at the micrograft borders and that ERK inhibition led to decreased urothelial migration and proliferation. Finally, we successfully isolated extracellular vesicles from the micrograft culture medium and evaluated their contents and relevance within various enriched biological processes. Our findings substantiate the potential of applying urothelial micrografting in future tissue-engineering models for reconstructive urological surgery, and, furthermore, highlights certain mechanisms as potential targets for future wound healing treatments.


Assuntos
Comunicação , Vesículas Extracelulares , Animais , Suínos , Células Epiteliais , Urotélio , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular
2.
Mol Ther ; 31(5): 1231-1250, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36805147

RESUMO

Extracellular vesicles (EVs) are gaining increasing attention for diagnostic and therapeutic applications in various diseases. These natural nanoparticles benefit from favorable safety profiles and unique biodistribution capabilities, rendering them attractive drug-delivery modalities over synthetic analogs. However, the widespread use of EVs is limited by technological shortcomings and biological knowledge gaps that fail to unravel their heterogeneity. An in-depth understanding of their biogenesis is crucial to unlocking their full therapeutic potential. Here, we explore how knowledge about EV biogenesis can be exploited for EV bioengineering to load therapeutic protein or nucleic acid cargos into or onto EVs. We summarize more than 75 articles and discuss their findings on the formation and composition of exosomes and microvesicles, revealing multiple pathways that may be stimulation and/or cargo dependent. Our analysis further identifies key regulators of natural EV cargo loading and we discuss how this knowledge is integrated to develop engineered EV biotherapeutics.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Exossomos/metabolismo , Micropartículas Derivadas de Células/metabolismo , Bioengenharia
3.
J Extracell Vesicles ; 11(7): e12248, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35879268

RESUMO

Extracellular vesicles (EVs) have shown promise as potential therapeutics for the treatment of various diseases. However, their rapid clearance after administration could be a limitation in certain therapeutic settings. To solve this, an engineering strategy is employed to decorate albumin onto the surface of the EVs through surface display of albumin binding domains (ABDs). ABDs were either included in the extracellular loops of select EV-enriched tetraspanins (CD63, CD9 and CD81) or directly fused to the extracellular terminal of single transmembrane EV-sorting domains, such as Lamp2B. These engineered EVs exert robust binding capacity to human serum albumins (HSA) in vitro and mouse serum albumins (MSA) after injection in mice. By binding to MSA, circulating time of EVs dramatically increases after different routes of injection in different strains of mice. Moreover, these engineered EVs show considerable lymph node (LN) and solid tumour accumulation, which can be utilized when using EVs for immunomodulation, cancer- and/or immunotherapy. The increased circulation time of EVs may also be important when combined with tissue-specific targeting ligands and could provide significant benefit for their therapeutic use in a variety of disease indications.


Assuntos
Vesículas Extracelulares , Neoplasias , Albuminas/análise , Animais , Tempo de Circulação Sanguínea , Modelos Animais de Doenças , Vesículas Extracelulares/química , Humanos , Linfonodos , Camundongos , Neoplasias/metabolismo , Tetraspaninas/análise
4.
Cancer Gene Ther ; 29(11): 1600-1615, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35477770

RESUMO

Extracellular Vesicles (EVs) are membranous vesicles produced by all cells under physiological and pathological conditions. In hematological malignancies, tumor-derived EVs might reprogram the bone marrow environment, suppress antileukemic immunity, mediate drug resistance and interfere with immunotherapies. EVs collected from the serum of leukemic samples might correlate with disease stage, drug-/immunological resistance, or might correlate with antileukemic immunity/immune response. Special EV surface protein patterns in serum have the potential as noninvasive biomarker candidates to distinguish several disease-related patterns ex vivo or in vivo. EVs were isolated from the serum of acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), chronic lymphoid leukemia (CLL) patients, and healthy volunteers. EVs were characterized by transmission electron microscopy and fluorescence nanoparticle tracking analysis, and EV surface protein profiles were analyzed by multiplex bead-based flow cytometry to identify tumor- or immune system-related EVs of AML, ALL, CLL, and healthy samples. Aiming to provide proof-of-concept evidence and methodology for the potential role of serum-derived EVs as biomarkers in leukemic versus healthy samples in this study, we hope to pave the way for future detection of promising biomarkers for imminent disease progression and the identification of potential targets to be used in a therapeutic strategy.


Assuntos
Vesículas Extracelulares , Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Humanos , Citometria de Fluxo , Vesículas Extracelulares/metabolismo , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/terapia , Biomarcadores/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Proteínas de Membrana/metabolismo
5.
Front Physiol ; 12: 689179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721051

RESUMO

Splice-switching antisense oligonucleotide- (SSO-) mediated correction of framedisrupting mutation-containing premessenger RNA (mRNA) transcripts using exon skipping is a highly promising treatment method for muscular diseases such as Duchenne muscular dystrophy (DMD). Phosphorothioate (PS) chemistry, a commonly used oligonucleotide modification, has been shown to increase the stability of and improve the pharmacokinetics of SSOs. However, the effect of PS inclusion in 2'-O-methyl SSOs (2OMe) on cellular uptake and splice switching is less well-understood. At present, we demonstrate that the modification of PS facilitates the uptake of 2OMe in H2k-mdx myoblasts. Furthermore, we found a dependency of SSO nuclear accumulation and high splice-switching activity on PS inclusion in 2OMe (2OMePS), as tested in various reporter cell lines carrying pLuc/705. Increased exon-inclusion activity was observed in muscle, neuronal, liver, and bone cell lineages via both the gymnotic uptake and lipofection of 2OMePS. Using the photoactivatable ribonucleoside-enhanced crosslinking and a subsequent proteomic approach, we identified several 2OMePS-binding proteins, which are likely to play a role in the trafficking of 2OMePS to the nucleus. Ablation of one of them, Ncl by small-interfering RNA (siRNA) enhanced 2OMePS uptake in C2C12 myoblasts and upregulated luciferase RNA splicing in the HeLa Luc/705 reporter cell line. Overall, we demonstrate that PS inclusion increases nuclear delivery and splice switching in muscle, neuronal, liver, and bone cell lineages and that the modulation of 2OMePS-binding partners may improve SSO delivery.

6.
EClinicalMedicine ; 38: 100988, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34505023

RESUMO

BACKGROUND: Brain amyloidosis does not invariably predict dementia. We hypothesized that high soluble 42-amino acid ß amyloid (Aß42) peptide levels are associated with normal cognition and hippocampal volume despite increasing brain amyloidosis. METHODS: This cross-sectional study of 598 amyloid-positive participants in the Alzheimer's Disease Neuroimaging Initiative cohort examined whether levels of soluble Aß42 are higher in amyloid-positive normal cognition (NC) individuals compared to mild cognitive impairment (MCI) and Alzheimer's disease (AD) and whether this relationship applies to neuropsychological assessments and hippocampal volume measured within the same year. All subjects were evaluated between June 2010 and February 2019. Brain amyloid positivity was defined as positron emission tomography-based standard uptake value ratio (SUVR) ≥1.08 for [18] F-florbetaben or 1.11 for [18]F-florbetapir, with higher SUVR indicating more brain amyloidosis. Analyses were adjusted for age, sex, education, APOE4, p-tau, t-tau, and centiloids levels. FINDINGS: Higher soluble Aß42 levels were observed in NC (864.00 pg/ml) than in MCI (768.60 pg/ml) or AD (617.46 pg/ml), with the relationship between NC, MCI, and AD maintained across all amyloid tertiles. In adjusted analysis, there was a larger absolute effect size of soluble Aß42 than SUVR for NC (0.82 vs. 0.40) and MCI (0.60 vs. 0.26) versus AD. Each standard deviation increase in Aß42 was associated with greater odds of NC than AD (adjusted odds ratio, 6.26; p < 0.001) or MCI (1.42; p = 0.006). Higher soluble Aß42 levels were also associated with better neuropsychological function and larger hippocampal volume. INTERPRETATION: Normal cognition and hippocampal volume are associated with preservation of high soluble Aß42 levels despite increasing brain amyloidosis. FUNDING: Please refer to the Funding section at the end of the article.

7.
Biomedicines ; 9(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34440250

RESUMO

Splice-switching therapy with splice-switching oligonucleotides (SSOs) has recently proven to be a clinically applicable strategy for the treatment of several mis-splice disorders. Despite this, wider application of SSOs is severely limited by the inherently poor bioavailability of SSO-based therapeutic compounds. Cell-penetrating peptides (CPPs) are a class of drug delivery systems (DDSs) that have recently gained considerable attention for improving the uptake of various oligonucleotide (ON)-based compounds, including SSOs. One strategy that has been successfully applied to develop effective CPP vectors is the introduction of various lipid modifications into the peptide. Here, we repurpose hydrocarbon-modified amino acids used in peptide stapling for the orthogonal introduction of hydrophobic modifications into the CPP structure during peptide synthesis. Our data show that α,α-disubstituted alkenyl-alanines can be successfully utilized to introduce hydrophobic modifications into CPPs to improve their ability to formulate SSOs into nanoparticles (NPs), and to mediate high delivery efficacy and tolerability both in vitro and in vivo. Conclusively, our results offer a new flexible approach for the sequence-specific introduction of hydrophobicity into the structure of CPPs and for improving their delivery properties.

8.
Pharmaceutics ; 13(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198625

RESUMO

The toolbox for genetic engineering has quickly evolved from CRISPR/Cas9 to a myriad of different gene editors, each with promising properties and enormous clinical potential. However, a major challenge remains: delivering the CRISPR machinery to the nucleus of recipient cells in a nontoxic and efficient manner. In this article, we repurpose an RNA-delivering cell-penetrating peptide, PepFect14 (PF14), to deliver Cas9 ribonucleoprotein (RNP). The RNP-CPP complex achieved high editing rates, e.g., up to 80% in HEK293T cells, while being active at low nanomolar ranges without any apparent signs of toxicity. The editing efficiency was similar to or better compared to the commercially available reagents RNAiMAX and CRISPRMax. The efficiency was thoroughly evaluated in reporter cells and wild-type cells by restriction enzyme digest and next-generation sequencing. Furthermore, the CPP-Cas9-RNP complexes were demonstrated to withstand storage at different conditions, including freeze-thaw cycles and freeze-drying, without a loss in editing efficiency. This CPP-based delivery strategy complements existing technologies and further opens up new opportunities for Cas9 RNP delivery, which can likely be extended to other gene editors in the future.

9.
Biomaterials ; 266: 120435, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33049461

RESUMO

The cytokine interleukin 6 (IL6) is a key mediator of inflammation that contributes to skeletal muscle pathophysiology. IL6 activates target cells by two main mechanisms, the classical and trans-signalling pathways. While classical signalling is associated with the anti-inflammatory activities of the cytokine, the IL6 trans-signalling pathway mediates chronic inflammation and is therefore a target for therapeutic intervention. Extracellular vesicles (EVs) are natural, lipid-bound nanoparticles, with potential as targeted delivery vehicles for therapeutic macromolecules. Here, we engineered EVs to express IL6 signal transducer (IL6ST) decoy receptors to selectively inhibit the IL6 trans-signalling pathway. The potency of the IL6ST decoy receptor EVs was optimized by inclusion of a GCN4 dimerization domain and a peptide sequence derived from syntenin-1 which targets the decoy receptor to EVs. The resulting engineered EVs were able to efficiently inhibit activation of the IL6 trans-signalling pathway in reporter cells, while having no effect on the IL6 classical signalling. IL6ST decoy receptor EVs, were also capable of blocking the IL6 trans-signalling pathway in C2C12 myoblasts and myotubes, thereby inhibiting the phosphorylation of STAT3 and partially reversing the anti-differentiation effects observed when treating cells with IL6/IL6R complexes. Treatment of a Duchenne muscular dystrophy mouse model with IL6ST decoy receptor EVs resulted in a reduction in STAT3 phosphorylation in the quadriceps and gastrocnemius muscles of these mice, thereby demonstrating in vivo activity of the decoy receptor EVs as a potential therapy. Taken together, this study reveals the IL6 trans-signalling pathway as a promising therapeutic target in DMD, and demonstrates the therapeutic potential of IL6ST decoy receptor EVs.


Assuntos
Vesículas Extracelulares , Distrofia Muscular de Duchenne , Animais , Interleucina-6 , Camundongos , Fibras Musculares Esqueléticas , Transdução de Sinais
10.
Adv Drug Deliv Rev ; 159: 332-343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32305351

RESUMO

Over the past decades, a multitude of synthetic drug delivery systems has been developed and introduced to the market. However, applications of such systems are limited due to inefficiency, cytotoxicity and/or immunogenicity. At the same time, the field of natural drug carrier systems has grown rapidly. One of the most prominent examples of such natural carriers are extracellular vesicles (EVs). EVs are cell-derived membranous particles which play important roles in intercellular communication. EVs possess a number of characteristics that qualify them as promising vehicles for drug delivery. In order to take advantage of these attributes, an in-depth understanding of why EVs are such unique carrier systems and how we can exploit their qualities is pivotal. Here, we review unique EV features that are relevant for drug delivery and highlight emerging strategies to make use of those features for drug loading and targeted delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Animais , Vesículas Extracelulares/metabolismo , Humanos
11.
Pharmaceutics ; 11(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835435

RESUMO

Non-viral transfection vectors are commonly used for oligonucleotide (ON) delivery but face many challenges before reaching the desired compartments inside cells. With the support of additional compounds, it might be more feasible for a vector to endure the barriers and achieve efficient delivery. In this report, we screened 18 different excipients and evaluated their effect on the performance of peptide dendrimer/lipid vector to deliver single-stranded, splice-switching ONs under serum conditions. Transfection efficiency was monitored in four different reporter cell lines by measuring splice-switching activity on RNA and protein levels. All reporter cell lines used had a mutated human ß-globin intron 2 sequence interrupting the luciferase gene, which led to an aberrant splicing of luciferase pre-mRNA and subsidence of luciferase protein translation. In the HeLa Luc/705 reporter cell line (a cervical cancer cell line), the lead excipients (Polyvinyl derivatives) potentiated the splice-switching activity up to 95-fold, compared to untreated cells with no detected cytotoxicity. Physical characterization revealed that lead excipients decreased the particle size and the zeta potential of the formulations. In vivo biodistribution studies emphasized the influence of formulations as well as the type of excipients on biodistribution profiles of the ON. Subsequently, we suggest that the highlighted impact of tested excipients would potentially assist in formulation development to deliver ON therapeutics in pre-clinical and clinical settings.

12.
Biochem Biophys Res Commun ; 504(4): 749-752, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30217447

RESUMO

Many cancer types carry mutations in protein tyrosine kinase (PTK) and such alterations frequently drive tumor progression. One category is gene translocation of PTKs yielding chimeric proteins with transforming capacity. In this study, we characterized the role of ITK-FER [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with Feline Encephalitis Virus-Related kinase (FER) gene] and ITK-SYK [Interleukin-2-inducible T-cell Kinase (ITK) gene fused with the Spleen Tyrosine Kinase (SYK)] in Peripheral T Cell Lymphoma (PTCL) signaling. We observed an induction of tyrosine phosphorylation events in the presence of both ITK-FER and ITK-SYK. The downstream targets of ITK-FER and ITK-SYK were explored and STAT3 was found to be highly phosphorylated by these fusion kinases. In addition, the CD69 T-cell activation marker was significantly elevated. Apart from tyrosine kinase inhibitors acting directly on the fusions, we believe that drugs acting on downstream targets could serve as alternative cancer therapies for fusion PTKs.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Células Jurkat , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Camundongos , Células NIH 3T3 , Proteínas de Fusão Oncogênica/genética , Fosforilação , Proteínas Tirosina Quinases/genética , Quinase Syk/genética , Quinase Syk/metabolismo , Translocação Genética
13.
Sci Rep ; 7(1): 11561, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912498

RESUMO

Extracellular vesicles (EVs) play a pivotal role in cell-to-cell communication and have been shown to take part in several physiological and pathological processes. EVs have traditionally been purified by ultracentrifugation (UC), however UC has limitations, including resulting in, operator-dependant yields, EV aggregation and altered EV morphology, and moreover is time consuming. Here we show that commercially available bind-elute size exclusion chromatography (BE-SEC) columns purify EVs with high yield (recovery ~ 80%) in a time-efficient manner compared to current methodologies. This technique is reproducible and scalable, and surface marker analysis by bead-based flow cytometry revealed highly similar expression signatures compared with UC-purified samples. Furthermore, uptake of eGFP labelled EVs in recipient cells was comparable between BE-SEC and UC samples. Hence, the BE-SEC based EV purification method represents an important methodological advance likely to facilitate robust and reproducible studies of EV biology and therapeutic application.


Assuntos
Fracionamento Químico/métodos , Cromatografia de Afinidade , Cromatografia em Gel , Vesículas Extracelulares , Animais , Linhagem Celular , Cromatografia em Gel/métodos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Humanos , Camundongos , Proteínas/metabolismo , RNA/metabolismo
14.
Nat Rev Neurol ; 12(6): 346-57, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27174238

RESUMO

To develop effective disease-modifying therapies for neurodegenerative diseases, reliable markers of diagnosis, disease activity and progression are a research priority. The fact that neurodegenerative pathology is primarily associated with distinct subsets of cells in discrete areas of the CNS makes the identification of relevant biomarker molecules a challenge. The trafficking of macromolecules from the CNS to the cerebrospinal fluid and blood, mediated by extracellular vesicles (EVs), presents a promising source of CNS-specific biomarkers. EVs are released by almost all cell types and carry a cargo of protein and nucleic acid that varies according to the cell of origin. EV output changes with cell status and reflects intracellular events, so surface marker expression can be used to identify the cell type from which EVs originate. EVs could, therefore, provide an enriched pool of information about core neuropathogenic, cell-specific processes. This Review examines the current knowledge of the biology and function of EVs, discusses the evidence for their involvement in the pathogenesis of neurodegenerative diseases, and considers their potential as biomarkers of disease.


Assuntos
Biomarcadores , Vesículas Extracelulares , Doenças Neurodegenerativas/diagnóstico , Humanos , Doenças Neurodegenerativas/sangue , Doenças Neurodegenerativas/líquido cefalorraquidiano
15.
Mol Ther Nucleic Acids ; 5: e290, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27111416

RESUMO

The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

16.
J Extracell Vesicles ; 4: 26883, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26022510

RESUMO

Extracellular vesicles (EVs) play a significant role in cell-cell communication in numerous physiological processes and pathological conditions, and offer promise as novel biomarkers and therapeutic agents for genetic diseases. Many recent studies have described different molecular mechanisms that contribute to EV biogenesis and release from cells. However, little is known about how external stimuli such as cell culture conditions can affect the quantity and content of EVs. While N2a neuroblastoma cells cultured in serum-free (OptiMEM) conditions did not result in EVs with significant biophysical or size differences compared with cells cultured in serum-containing (pre-spun) conditions, the quantity of isolated EVs was greatly increased. Moreover, the expression levels of certain vesicular proteins (e.g. small GTPases, G-protein complexes, mRNA processing proteins and splicing factors), some of which were previously reported to be involved in EV biogenesis, were found to be differentially expressed in EVs under different culture conditions. These data, therefore, contribute to the understanding of how extracellular factors and intracellular molecular pathways affect the composition and release of EVs.

17.
J Extracell Vesicles ; 4: 26316, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25899407

RESUMO

Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in a diverse range of biological processes. For future therapeutic applications and for EV biology research in general, understanding the in vivo fate of EVs is of utmost importance. Here we studied biodistribution of EVs in mice after systemic delivery. EVs were isolated from 3 different mouse cell sources, including dendritic cells (DCs) derived from bone marrow, and labelled with a near-infrared lipophilic dye. Xenotransplantation of EVs was further carried out for cross-species comparison. The reliability of the labelling technique was confirmed by sucrose gradient fractionation, organ perfusion and further supported by immunohistochemical staining using CD63-EGFP probed vesicles. While vesicles accumulated mainly in liver, spleen, gastrointestinal tract and lungs, differences related to EV cell origin were detected. EVs accumulated in the tumour tissue of tumour-bearing mice and, after introduction of the rabies virus glycoprotein-targeting moiety, they were found more readily in acetylcholine-receptor-rich organs. In addition, the route of administration and the dose of injected EVs influenced the biodistribution pattern. This is the first extensive biodistribution investigation of EVs comparing the impact of several different variables, the results of which have implications for the design and feasibility of therapeutic studies using EVs.

18.
Nucleic Acid Ther ; 24(1): 13-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24506779

RESUMO

Targeting of pre-mRNA by short splice-switching oligonucleotides (SSOs) is increasingly being used as a therapeutic modality, one rationale being to disrupt splicing so as to remove exons containing premature termination codons, or to restore the translation reading frame around out-of-frame deletion mutations. The aim of this study was to investigate the effect of chemically linking individual SSOs so as to ascertain equimolar cellular uptake that would provide for more defined drug formulations. In contrast to conventional bispecific SSOs generated by conjugation in solution, here we describe a protocol for synthesis of bispecific SSOs on solid phase. These SSOs comprised of either a non-cleavable hydrocarbon linker or disulfide-based cleavable linkers. To assess the efficacy of these SSOs we have utilized splice switching to bypass a disease-causing mutation in the DMD gene concurrent with disruption of the reading frame of the myostatin gene (Mstn). The premise of this approach is that disruption of myostatin expression is known to induce muscle hypertrophy and so for Duchenne muscular dystrophy (DMD) could be expected to have a better outcome than dystrophin restoration alone. All tested SSOs mediated simultaneous robust exon removal from mature Dmd and Mstn transcripts in myotubes. Our results also demonstrate that using cleavable SSOs is preferred over the non-cleavable counterparts and that these are equally efficient at inducing exon skipping as cocktails of monospecific versions. In conclusion, we have developed a protocol for solid-phase synthesis of single molecule cleavable bispecific SSOs that can be efficiently exploited for targeting of multiple RNA transcripts.


Assuntos
Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Reparo Gênico Alvo-Dirigido/métodos , Animais , Sequência de Bases , Linhagem Celular , Distrofina/genética , Éxons , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Mutação , Miostatina/genética , Splicing de RNA/genética
19.
Mol Ther Nucleic Acids ; 2: e140, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24399204

RESUMO

The minicircle (MC), composed of eukaryotic sequences only, is an interesting approach to increase the safety and efficiency of plasmid-based vectors for gene therapy. In this paper, we investigate micro-MC (miMC) vectors encoding small regulatory RNA. We use a construct encoding a splice-correcting U7 small nuclear RNA, which results in a vector of 650 base pairs (bp), as compared to a conventional 3600 bp plasmid carrying the same expression cassette. Furthermore, we construct miMCs of varying sizes carrying different number of these cassettes. This allows us to evaluate how size influences production, super-coiling, stability and efficiency of the vector. We characterize coiling morphology by atomic force microscopy and measure the resistance to shearing forces caused by an injector device, the Biojector. We compare the behavior of miMCs and plasmids in vitro using lipofection and electroporation, as well as in vivo in mice. We here show that when the size of the miMC is reduced, the formation of dimers and trimers increases. There seems to be a lower size limit for efficient expression. We demonstrate that miMCs are more robust than plasmids when exposed to shearing forces, and that they show extended expression in vivo.Molecular Therapy-Nucleic Acids (2014); doi:10.1038/mtna.2013.67.

20.
Nucleic Acids Res ; 41(5): 3257-73, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23345620

RESUMO

In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON-bisLNA-with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson-Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.


Assuntos
DNA Super-Helicoidal/química , Oligonucleotídeos/química , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Soluções Tampão , DNA/química , Clivagem do DNA , Enzimas de Restrição do DNA/química , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oligonucleotídeos/síntese química , Plasmídeos/química , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...