Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12907, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839814

RESUMO

Flatbed scanners are commonly used for root analysis, but typical manual segmentation methods are time-consuming and prone to errors, especially in large-scale, multi-plant studies. Furthermore, the complex nature of root structures combined with noisy backgrounds in images complicates automated analysis. Addressing these challenges, this article introduces RhizoNet, a deep learning-based workflow to semantically segment plant root scans. Utilizing a sophisticated Residual U-Net architecture, RhizoNet enhances prediction accuracy and employs a convex hull operation for delineation of the primary root component. Its main objective is to accurately segment root biomass and monitor its growth over time. RhizoNet processes color scans of plants grown in a hydroponic system known as EcoFAB, subjected to specific nutritional treatments. The root detection model using RhizoNet demonstrates strong generalization in the validation tests of all experiments despite variable treatments. The main contributions are the standardization of root segmentation and phenotyping, systematic and accelerated analysis of thousands of images, significantly aiding in the precise assessment of root growth dynamics under varying plant conditions, and offering a path toward self-driving labs.


Assuntos
Biomassa , Raízes de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Aprendizado Profundo
2.
Sci Adv ; 10(1): eadg7888, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170767

RESUMO

Understanding plant-microbe interactions requires examination of root exudation under nutrient stress using standardized and reproducible experimental systems. We grew Brachypodium distachyon hydroponically in fabricated ecosystem devices (EcoFAB 2.0) under three inorganic nitrogen forms (nitrate, ammonium, and ammonium nitrate), followed by nitrogen starvation. Analyses of exudates with liquid chromatography-tandem mass spectrometry, biomass, medium pH, and nitrogen uptake showed EcoFAB 2.0's low intratreatment data variability. Furthermore, the three inorganic nitrogen forms caused differential exudation, generalized by abundant amino acids-peptides and alkaloids. Comparatively, nitrogen deficiency decreased nitrogen-containing compounds but increased shikimates-phenylpropanoids. Subsequent bioassays with two shikimates-phenylpropanoids (shikimic and p-coumaric acids) on soil bacteria or Brachypodium seedlings revealed their distinct capacity to regulate both bacterial and plant growth. Our results suggest that (i) Brachypodium alters exudation in response to nitrogen status, which can affect rhizobacterial growth, and (ii) EcoFAB 2.0 is a valuable standardized plant research tool.


Assuntos
Brachypodium , Ecossistema , Brachypodium/microbiologia , Nitrogênio , Ácido Chiquímico , Biomassa
3.
Lab Chip ; 23(15): 3361-3369, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37401915

RESUMO

Mass spectrometry (MS) enables detection of different chemical species with a very high specificity; however, it can be limited by its throughput. Integrating MS with microfluidics has a tremendous potential to improve throughput and accelerate biochemical research. In this work, we introduce Drop-NIMS, a combination of a passive droplet loading microfluidic device and a matrix-free MS laser desorption ionization technique called nanostructure-initiator mass spectrometry (NIMS). This platform combines different droplets at random to generate a combinatorial library of enzymatic reactions that are deposited directly on the NIMS surface without requiring additional sample handling. The enzyme reaction products are then detected with MS. Drop-NIMS was used to rapidly screen enzymatic reactions containing low (on the order of nL) volumes of glycoside reactants and glycoside hydrolase enzymes per reaction. MS "barcodes" (small compounds with unique masses) were added to the droplets to identify different combinations of substrates and enzymes created by the device. We assigned xylanase activities to several putative glycoside hydrolases, making them relevant to food and biofuel industrial applications. Overall, Drop-NIMS is simple to fabricate, assemble, and operate and it has potential to be used with many other small molecule metabolites.


Assuntos
Glicosídeo Hidrolases , Nanoestruturas , Espectrometria de Massas/métodos , Glicosídeo Hidrolases/metabolismo , Nanoestruturas/química , Dispositivos Lab-On-A-Chip , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
ISME Commun ; 3(1): 54, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280433

RESUMO

For a deeper and comprehensive understanding of the composition and function of rhizosphere microbiomes, we need to focus at the scale of individual roots in standardized growth containers. Root exudation patterns are known to vary along distinct parts of the root even in juvenile plants giving rise to spatially distinct microbial niches. To address this, we analyzed the microbial community from two spatially distinct zones of the developing primary root (tip and base) in young Brachypodium distachyon grown in natural soil using standardized fabricated ecosystems known as EcoFABs as well as in more conventional pot and tubes. 16S rRNA based community analysis showed a strong rhizosphere effect resulting in significant enrichment of several OTUs belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. However, microbial community composition did not differ between root tips and root base or across different growth containers. Functional analysis of bulk metagenomics revealed significant differences between root tips and bulk soil. The genes associated with different metabolic pathways and root colonization were enriched in root tips. On the other hand, genes associated with nutrient-limitation and environmental stress were prominent in the bulk soil compared to root tips, implying the absence of easily available, labile carbon and nutrients in bulk soil relative to roots. Such insights into the relationships between developing root and microbial communities are critical for judicious understanding of plant-microbe interactions in early developmental stages of plants.

5.
Front Microbiol ; 13: 855331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694313

RESUMO

Exometabolomics is an approach to assess how microorganisms alter, or react to their environments through the depletion and production of metabolites. It allows the examination of how soil microbes transform the small molecule metabolites within their environment, which can be used to study resource competition and cross-feeding. This approach is most powerful when used with defined media that enable tracking of all metabolites. However, microbial growth media have traditionally been developed for the isolation and growth of microorganisms but not metabolite utilization profiling through Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Here, we describe the construction of a defined medium, the Northen Lab Defined Medium (NLDM), that not only supports the growth of diverse soil bacteria but also is defined and therefore suited for exometabolomic experiments. Metabolites included in NLDM were selected based on their presence in R2A medium and soil, elemental stoichiometry requirements, as well as knowledge of metabolite usage by different bacteria. We found that NLDM supported the growth of 108 of the 110 phylogenetically diverse (spanning 36 different families) soil bacterial isolates tested and all of its metabolites were trackable through LC-MS/MS analysis. These results demonstrate the viability and utility of the constructed NLDM medium for growing and characterizing diverse microbial isolates and communities.

6.
Front Microbiol ; 13: 914472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756023

RESUMO

Microorganisms have evolved various life-history strategies to survive fluctuating resource conditions in soils. However, it remains elusive how the life-history strategies of microorganisms influence their processing of organic carbon, which may affect microbial interactions and carbon cycling in soils. Here, we characterized the genomic traits, exometabolite profiles, and interactions of soil bacteria representing copiotrophic and oligotrophic strategists. Isolates were selected based on differences in ribosomal RNA operon (rrn) copy number, as a proxy for life-history strategies, with pairs of "high" and "low" rrn copy number isolates represented within the Micrococcales, Corynebacteriales, and Bacillales. We found that high rrn isolates consumed a greater diversity and amount of substrates than low rrn isolates in a defined growth medium containing common soil metabolites. We estimated overlap in substrate utilization profiles to predict the potential for resource competition and found that high rrn isolates tended to have a greater potential for competitive interactions. The predicted interactions positively correlated with the measured interactions that were dominated by negative interactions as determined through sequential growth experiments. This suggests that resource competition was a major force governing interactions among isolates, while cross-feeding of metabolic secretion likely contributed to the relatively rare positive interactions observed. By connecting bacterial life-history strategies, genomic features, and metabolism, our study advances the understanding of the links between bacterial community composition and the transformation of carbon in soils.

7.
J Exp Bot ; 73(15): 5306-5321, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35512445

RESUMO

Nitrogen (N) fixation in cereals by root-associated bacteria is a promising solution for reducing use of chemical N fertilizers in agriculture. However, plant and bacterial responses are unpredictable across environments. We hypothesized that cereal responses to N-fixing bacteria are dynamic, depending on N supply and time. To quantify the dynamics, a gnotobiotic, fabricated ecosystem (EcoFAB) was adapted to analyse N mass balance, to image shoot and root growth, and to measure gene expression of Brachypodium distachyon inoculated with the N-fixing bacterium Herbaspirillum seropedicae. Phenotyping throughput of EcoFAB-N was 25-30 plants h-1 with open software and imaging systems. Herbaspirillum seropedicae inoculation of B. distachyon shifted root and shoot growth, nitrate versus ammonium uptake, and gene expression with time; directions and magnitude depended on N availability. Primary roots were longer and root hairs shorter regardless of N, with stronger changes at low N. At higher N, H. seropedicae provided 11% of the total plant N that came from sources other than the seed or the nutrient solution. The time-resolved phenotypic and molecular data point to distinct modes of action: at 5 mM NH4NO3 the benefit appears through N fixation, while at 0.5 mM NH4NO3 the mechanism appears to be plant physiological, with H. seropedicae promoting uptake of N from the root medium.Future work could fine-tune plant and root-associated microorganisms to growth and nutrient dynamics.


Assuntos
Compostos de Amônio , Brachypodium , Herbaspirillum , Compostos de Amônio/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Ecossistema , Grão Comestível/metabolismo , Herbaspirillum/genética , Herbaspirillum/metabolismo , Nitratos/metabolismo , Raízes de Plantas/metabolismo
8.
Commun Biol ; 4(1): 1302, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795375

RESUMO

Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting experiment uncovered phylum-specific BGC expression upon activation from dormancy, elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting processes. For example, a pronounced increase in BGC transcription occurs at night primarily in cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken together, our results demonstrate that long-read metagenomic sequencing combined with metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in environmental processes and suggests a central role of secondary metabolites in maintaining phylogenetically conserved niches within biocrusts.


Assuntos
Bactérias/metabolismo , Metagenoma , Microbiota/genética , Metabolismo Secundário , Microbiologia do Solo , Bactérias/genética , Metagenômica , Família Multigênica , Utah
9.
Proc Natl Acad Sci U S A ; 116(33): 16448-16453, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346083

RESUMO

Reactive oxygen species (ROS) like superoxide drive rapid transformations of carbon and metals in aquatic systems and play dynamic roles in biological health, signaling, and defense across a diversity of cell types. In phytoplankton, however, the ecophysiological role(s) of extracellular superoxide production has remained elusive. Here, the mechanism and function of extracellular superoxide production by the marine diatom Thalassiosira oceanica are described. Extracellular superoxide production in T. oceanica exudates was coupled to the oxidation of NADPH. A putative NADPH-oxidizing flavoenzyme with predicted transmembrane domains and high sequence similarity to glutathione reductase (GR) was implicated in this process. GR was also linked to extracellular superoxide production by whole cells via quenching by the flavoenzyme inhibitor diphenylene iodonium (DPI) and oxidized glutathione, the preferred electron acceptor of GR. Extracellular superoxide production followed a typical photosynthesis-irradiance curve and increased by 30% above the saturation irradiance of photosynthesis, while DPI significantly impaired the efficiency of photosystem II under a wide range of light levels. Together, these results suggest that extracellular superoxide production is a byproduct of a transplasma membrane electron transport system that serves to balance the cellular redox state through the recycling of photosynthetic NADPH. This photoprotective function may be widespread, consistent with the presence of putative homologs to T. oceanica GR in other representative marine phytoplankton and ocean metagenomes. Given predicted climate-driven shifts in global surface ocean light regimes and phytoplankton community-level photoacclimation, these results provide implications for future ocean redox balance, ecological functioning, and coupled biogeochemical transformations of carbon and metals.


Assuntos
Diatomáceas/metabolismo , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo , Superóxidos/metabolismo , Carbono/metabolismo , Diatomáceas/genética , Transporte de Elétrons/genética , NADP/genética , NADP/metabolismo , Oxirredução , Complexo de Proteína do Fotossistema II/genética , Fitoplâncton/genética , Fitoplâncton/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Nat Microbiol ; 4(8): 1356-1367, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31110364

RESUMO

Soil microbial activity drives the carbon and nitrogen cycles and is an important determinant of atmospheric trace gas turnover, yet most soils are dominated by microorganisms with unknown metabolic capacities. Even Acidobacteria, among the most abundant bacteria in soil, remain poorly characterized, and functions across groups such as Verrucomicrobia, Gemmatimonadetes, Chloroflexi and Rokubacteria are understudied. Here, we have resolved 60 metagenomic and 20 proteomic data sets from a Mediterranean grassland soil ecosystem and recovered 793 near-complete microbial genomes from 18 phyla, representing around one-third of all microorganisms detected. Importantly, this enabled extensive genomics-based metabolic predictions for these communities. Acidobacteria from multiple previously unstudied classes have genomes that encode large enzyme complements for complex carbohydrate degradation. Alternatively, most microorganisms encode carbohydrate esterases that strip readily accessible methyl and acetyl groups from polymers like pectin and xylan, forming methanol and acetate, the availability of which could explain the high prevalence of C1 metabolism and acetate utilization in genomes. Microorganism abundances among samples collected at three soil depths and under natural and amended rainfall regimes indicate statistically higher associations of inorganic nitrogen metabolism and carbon degradation in deep and shallow soils, respectively. This partitioning decreased in samples under extended spring rainfall, indicating that long-term climate alteration can affect both carbon and nitrogen cycling. Overall, by leveraging natural and experimental gradients with genome-resolved metabolic profiles, we link microorganisms lacking prior genomic characterization to specific roles in complex carbon, C1, nitrate and ammonia transformations, and constrain factors that impact their distributions in soil.


Assuntos
Bactérias/genética , Carbono/metabolismo , Genômica , Pradaria , Nitrogênio/metabolismo , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , California , Ciclo do Carbono , Ecologia , Ecossistema , Metagenômica , Ciclo do Nitrogênio , Proteômica
11.
PeerJ ; 4: e2687, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27843720

RESUMO

Annually, half of all plant-derived carbon is added to soil where it is microbially respired to CO2. However, understanding of the microbiology of this process is limited because most culture-independent methods cannot link metabolic processes to the organisms present, and this link to causative agents is necessary to predict the results of perturbations on the system. We collected soil samples at two sub-root depths (10-20 cm and 30-40 cm) before and after a rainfall-driven nutrient perturbation event in a Northern California grassland that experiences a Mediterranean climate. From ten samples, we reconstructed 198 metagenome-assembled genomes that represent all major phylotypes. We also quantified 6,835 proteins and 175 metabolites and showed that after the rain event the concentrations of many sugars and amino acids approach zero at the base of the soil profile. Unexpectedly, the genomes of novel members of the Gemmatimonadetes and Candidate Phylum Rokubacteria phyla encode pathways for methylotrophy. We infer that these abundant organisms contribute substantially to carbon turnover in the soil, given that methylotrophy proteins were among the most abundant proteins in the proteome. Previously undescribed Bathyarchaeota and Thermoplasmatales archaea are abundant in deeper soil horizons and are inferred to contribute appreciably to aromatic amino acid degradation. Many of the other bacteria appear to breakdown other components of plant biomass, as evidenced by the prevalence of various sugar and amino acid transporters and corresponding hydrolyzing machinery in the proteome. Overall, our work provides organism-resolved insight into the spatial distribution of bacteria and archaea whose activities combine to degrade plant-derived organics, limiting the transport of methanol, amino acids and sugars into underlying weathered rock. The new insights into the soil carbon cycle during an intense period of carbon turnover, including biogeochemical roles to previously little known soil microbes, were made possible via the combination of metagenomics, proteomics, and metabolomics.

12.
Environ Microbiol ; 17(10): 3925-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25923595

RESUMO

Manganese (Mn) oxides are among the strongest sorbents and oxidants in environmental systems. A number of biotic and abiotic pathways induce the oxidation of Mn(II) to Mn oxides. Here, we use a combination of proteomic analyses and activity assays, to identify the enzyme(s) responsible for extracellular superoxide-mediated Mn oxide formation by a bacterium within the ubiquitous Roseobacter clade. We show that animal haem peroxidases (AHPs) located on the outer membrane and within the secretome are responsible for Mn(II) oxidation. These novel peroxidases have previously been implicated in direct Mn(II) oxidation by phylogenetically diverse bacteria. Yet, we show that in this Roseobacter species, AHPs mediate Mn(II) oxidation not through a direct reaction but by producing superoxide and likely also by degrading hydrogen peroxide. These findings point to a eukaryotic-like oscillatory oxidative-peroxidative enzymatic cycle by these AHPs that leads to Mn oxide formation by this organism. AHP expression appears unaffected by Mn(II), yet the large energetic investment required to produce and secrete these enzymes points to an as yet unknown physiological function. These findings are further evidence that bacterial peroxidases and secreted enzymes, in general, are unappreciated controls on the cycling of metals and reactive oxygen species (ROS), and by extension carbon, in natural systems.


Assuntos
Heme/metabolismo , Manganês/química , Peroxidases/metabolismo , Roseobacter/metabolismo , Superóxidos/metabolismo , Animais , Carbono/química , Peróxido de Hidrogênio/química , Compostos de Manganês/química , Oxirredução , Óxidos/química , Peroxidases/genética , Filogenia , Proteômica , Roseobacter/genética
13.
Appl Environ Microbiol ; 80(21): 6601-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128343

RESUMO

Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.


Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Substâncias Explosivas/metabolismo , Família Multigênica , Triazinas/metabolismo , Biotransformação , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Oxirredução , Análise de Sequência de DNA
14.
Environ Sci Technol ; 47(18): 10356-63, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23909596

RESUMO

The leaching of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) from particulates deposited in live-fire military training range soils contributes to significant pollution of groundwater. In situ microbial degradation has been proposed as a viable method for onsite containment of RDX. However, there is only a single report of RDX degradation in training range soils and the soil microbial communities involved in RDX degradation were not identified. Here we demonstrate aerobic RDX degradation in soils taken from a target area of an Eglin Air Force Base bombing range, C52N Cat's Eye, (Eglin, Florida U.S.A.). RDX-degradation activity was spatially heterogeneous (found in less than 30% of initial target area field samples) and dependent upon the addition of exogenous carbon sources to the soils. Therefore, biostimulation (with exogenous carbon sources) and bioaugmentation may be necessary to sustain timely and effective in situ microbial biodegradation of RDX. High sensitivity stable isotope probing analysis of extracted soils incubated with fully labeled (15)N-RDX revealed several organisms with (15)N-labeled DNA during RDX-degradation, including xplA-bearing organisms. Rhodococcus was the most prominent genus in the RDX-degrading soil slurries and was completely labeled with (15)N-nitrogen from the RDX. Rhodococcus and Williamsia species isolated from these soils were capable of using RDX as a sole nitrogen source and possessed the genes xplB and xplA associated with RDX-degradation, indicating these genes may be suitable genetic biomarkers for assessing RDX degradation potential in soils. Other highly labeled species were primarily Proteobacteria, including: Mesorhizobium sp., Variovorax sp., and Rhizobium sp.


Assuntos
Actinomycetales/metabolismo , Substâncias Explosivas/metabolismo , Poluentes do Solo/metabolismo , Triazinas/metabolismo , Actinomycetales/genética , Biodegradação Ambiental , Dosagem de Genes , Genes Bacterianos , Nitritos/metabolismo , Nitrogênio/metabolismo , Isótopos de Nitrogênio , RNA Ribossômico 16S/genética
15.
Science ; 340(6137): 1223-6, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23641059

RESUMO

Superoxide and other reactive oxygen species (ROS) originate from several natural sources and profoundly influence numerous elemental cycles, including carbon and trace metals. In the deep ocean, the permanent absence of light precludes currently known ROS sources, yet ROS production mysteriously occurs. Here, we show that taxonomically and ecologically diverse heterotrophic bacteria from aquatic and terrestrial environments are a vast, unrecognized, and light-independent source of superoxide, and perhaps other ROS derived from superoxide. Superoxide production by a model bacterium within the ubiquitous Roseobacter clade involves an extracellular oxidoreductase that is stimulated by the reduced form of nicotinamide adenine dinucleotide (NADH), suggesting a surprising homology with eukaryotic organisms. The consequences of ROS cycling in immense aphotic zones representing key sites of nutrient regeneration and carbon export must now be considered, including potential control of carbon remineralization and metal bioavailability.


Assuntos
Processos Heterotróficos , Mercúrio/metabolismo , Roseobacter/metabolismo , Superóxidos/metabolismo , Sequência de Aminoácidos , Ciclo do Carbono , Dados de Sequência Molecular , NAD/metabolismo , Oxirredutases/metabolismo , Filogenia , Roseobacter/classificação
16.
Appl Environ Microbiol ; 78(1): 163-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22038597

RESUMO

Stable-isotope probing (SIP) has proved a valuable cultivation-independent tool for linking specific microbial populations to selected functions in various natural and engineered systems. However, application of SIP to microbial populations with relatively minor buoyant density increases, such as populations that utilize compounds as a nitrogen source, results in reduced resolution of labeled populations. We therefore developed a tandem quantitative PCR (qPCR)-TRFLP (terminal restriction fragment length polymorphism) protocol that improves resolution of detection by quantifying specific taxonomic groups in gradient fractions. This method combines well-controlled amplification with TRFLP analysis to quantify relative taxon abundance in amplicon pools of FAM-labeled PCR products, using the intercalating dye EvaGreen to monitor amplification. Method accuracy was evaluated using mixtures of cloned 16S rRNA genes, DNA extracted from low- and high-G+C bacterial isolates (Escherichia coli, Rhodococcus, Variovorax, and Microbacterium), and DNA from soil microcosms amended with known amounts of genomic DNA from bacterial isolates. Improved resolution of minor shifts in buoyant density relative to TRFLP analysis alone was confirmed using well-controlled SIP analyses.


Assuntos
Impressões Digitais de DNA/métodos , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Microbiologia do Solo , Sequência de Bases , DNA Bacteriano/isolamento & purificação , Escherichia coli K12/genética , Escherichia coli K12/isolamento & purificação , Substâncias Intercalantes , Marcação por Isótopo , Modelos Lineares , Dados de Sequência Molecular , RNA Ribossômico 16S/análise , Rhodococcus/genética , Rhodococcus/isolamento & purificação , Análise de Sequência de DNA
17.
Appl Environ Microbiol ; 75(10): 3258-62, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19270122

RESUMO

Recent studies demonstrated that degradation of the military explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by species of Rhodococcus, Gordonia, and Williamsia is mediated by a novel cytochrome P450 with a fused flavodoxin reductase domain (XplA) in conjunction with a flavodoxin reductase (XplB). Pulse field gel analysis was used to localize xplA to extrachromosomal elements in a Rhodococcus sp. and distantly related Microbacterium sp. strain MA1. Comparison of Rhodococcus rhodochrous 11Y and Microbacterium plasmid sequences in the vicinity of xplB and xplA showed near identity (6,710 of 6,721 bp). Sequencing of the associated 52.2-kb region of the Microbacterium plasmid pMA1 revealed flanking insertion sequence elements and additional genes implicated in RDX uptake and degradation.


Assuntos
Actinomycetales/genética , Sistema Enzimático do Citocromo P-450/genética , DNA Bacteriano/genética , NADH NADPH Oxirredutases/genética , Rhodococcus/genética , Triazinas/metabolismo , Actinomycetales/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , DNA Bacteriano/química , Transferência Genética Horizontal , Dados de Sequência Molecular , NADH NADPH Oxirredutases/metabolismo , Filogenia , Plasmídeos , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...