Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1097462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998268

RESUMO

The paired antennal lobes were long considered the sole primary processing centers of the olfactory pathway in holometabolous insects receiving input from the olfactory sensory neurons of the antennae and mouthparts. In hemimetabolous insects, however, olfactory cues of the antennae and palps are processed separately. For the holometabolous red flour beetle Tribolium castaneum, we could show that primary processing of the palpal and antennal olfactory input also occurs separately and at distinct neuronal centers. While the antennal olfactory sensory neurons project into the antennal lobes, those of the palps project into the paired glomerular lobes and the unpaired gnathal olfactory center. Here we provide an extended analysis of the palpal olfactory pathway by combining scanning electron micrographs with confocal imaging of immunohistochemical staining and reporter expression identifying chemosensory and odorant receptor-expressing neurons in the palpal sensilla. In addition, we extended the anatomical characterization of the gnathal olfactory center by 3D reconstructions and investigated the distribution of several neuromediators. The similarities in the neuromediator repertoire between antennal lobes, glomerular lobes, and gnathal olfactory center underline the role of the latter two as additional primary olfactory processing centers.

2.
J Chem Phys ; 156(15): 154305, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459316

RESUMO

It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrödinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency ωc is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well.

3.
Phys Rev Lett ; 127(19): 190402, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797130

RESUMO

A paradigm shift in quantum thermometry is proposed. To date, thermometry has relied on local estimation, which is useful to reduce statistical fluctuations once the temperature is very well known. In order to estimate temperatures in cases where few measurement data or no substantial prior knowledge are available, we build instead a method for global quantum thermometry. Based on scaling arguments, a mean logarithmic error is shown here to be the correct figure of merit for thermometry. Its full minimization provides an operational and optimal rule to postprocess measurements into a temperature reading, and it establishes a global precision limit. We apply these results to the simulated outcomes of measurements on a spin gas, finding that the local approach can lead to biased temperature estimates in cases where the global estimator converges to the true temperature. The global framework thus enables a reliable approach to data analysis in thermometry experiments.

4.
Phys Rev Lett ; 124(21): 210601, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530653

RESUMO

Thought experiments involving gases and pistons, such as Maxwell's demon and Gibbs' mixing, are central to our understanding of thermodynamics. Here, we present a quantum thermodynamic thought experiment in which the energy transfer from two photonic gases to a piston membrane grows quadratically with the number of photons for indistinguishable gases, while it grows linearly for distinguishable gases. This signature of bosonic bunching may be observed in optomechanical experiments, highlighting the potential of these systems for the realization of thermodynamic thought experiments in the quantum realm.

5.
Phys Rev Lett ; 123(23): 230603, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868503

RESUMO

An important result in classical stochastic thermodynamics is the work fluctuation-dissipation relation (FDR), which states that the dissipated work done along a slow process is proportional to the resulting work fluctuations. We show that slowly driven quantum systems violate this FDR whenever quantum coherence is generated along the protocol, and we derive a quantum generalization of the work FDR. The additional quantum terms in the FDR are found to lead to a non-Gaussian work distribution. Fundamentally, our result shows that quantum fluctuations prohibit finding slow protocols that minimize both dissipation and fluctuations simultaneously, in contrast to classical slow processes. Instead, we develop a quantum geometric framework to find processes with an optimal trade-off between the two quantities.

6.
Entropy (Basel) ; 20(3)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33265291

RESUMO

The Leggett-Garg inequalities serve to test whether or not quantum correlations in time can be explained within a classical macrorealistic framework. We apply this test to thermodynamics and derive a set of Leggett-Garg inequalities for the statistics of fluctuating work done on a quantum system unitarily driven in time. It is shown that these inequalities can be violated in a driven two-level system, thereby demonstrating that there exists no general macrorealistic description of quantum work. These violations are shown to emerge within the standard Two-Projective-Measurement scheme as well as for alternative definitions of fluctuating work that are based on weak measurement. Our results elucidate the influences of temporal correlations on work extraction in the quantum regime and highlight a key difference between quantum and classical thermodynamics.

7.
Proc Natl Acad Sci U S A ; 114(29): 7561-7564, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28674009

RESUMO

In apparent contradiction to the laws of thermodynamics, Maxwell's demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon's memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.

8.
Opt Express ; 24(5): 4662-4671, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092295

RESUMO

We study theoretically how multiple scattering of light in a disordered medium can spontaneously generate quantum correlations. In particular we focus on the case where the input state is Gaussian and characterize the correlations between two arbitrary output modes. As there is not a single all-inclusive measure of correlation, we characterise the output correlations with three measures: intensity fluctuations, entanglement, and quantum discord. We find that, while a coherent input state can not produce quantum correlations, any other Gaussian input will produce them in one form or another. This includes input states that are usually regarded as more classical than coherent ones, such as thermal states, which will produce a non-zero quantum discord.

9.
Chaos ; 21(3): 037102, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974665

RESUMO

We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 1): 030102, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517434

RESUMO

We demonstrate the validity of Landauer's erasure principle in the strong coupling quantum regime by treating the system-reservoir interaction in a thermodynamic way. We show that the initial coupling to the reservoir modifies both the energy and the entropy of the system, and provide explicit expressions for the latter for a damped quantum harmonic oscillator. These contributions are related to the Hamiltonian of mean force and dominate in the strong damping limit. They need therefore to be fully taken into account in any low temperature thermodynamic analysis of quantum systems.

11.
Phys Rev Lett ; 102(5): 050502, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19257493

RESUMO

We study the intrinsic computational power of correlations exploited in measurement-based quantum computation. By defining a general framework, the meaning of the computational power of correlations is made precise. This leads to a notion of resource states for measurement-based classical computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as optimal examples. Our work exposes an intriguing relationship between the violation of local realistic models and the computational power of entangled resource states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...