Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med ; 123: 103406, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38875931

RESUMO

PURPOSE: Ionisation chamber based reference dosimetry in magnetic resonance linear accelerators (MRL) aimed for radiotherapy requires correction for recombination losses. Published studies have found that such corrections can be carried out using the two-voltage method. These studies have, however, not included comparison with recombination corrections based on the Niatel method, which can be seen as a robust reference method due to its clear separation of initial and volume recombination and its explicit account of the pulsed nature of the dose delivery. The primary objective of this work therefore was to carry out such a comparison. MATERIALS AND METHODS: Four Farmer-type chambers (PTW-30006 and PTW-30013) were placed in a water phantom in 1.5 T Elekta Unity MRL. The chambers were oriented antiparallel or perpendicular to the static magnetic field B0 and irradiated at a source-to-surface distance of 133.5 cm with a 10 × 10 cm2 field size. RESULTS: The two-voltage method gave results in agreement (within 0.1%) with the recombination corrections derived from the Niatel method. The recombination corrections from three Niatel parameter sets (one based on a Varian Truebeam and two obtained directly in the MRL) deviated less than 0.1% from each other. A systematic shift in the recombination correction of less than 0.05% was observed if polarity corrections were not applied. CONCLUSIONS: The study supports the use of the two-voltage method in MRLs based on its excellent agreement with the Niatel method. This work, therefore, complements existing knowledge as previous studies have not included a comparison with the Niatel method.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38750904

RESUMO

PURPOSE: Preclinical studies have shown a preferential normal tissue sparing effect of FLASH radiation therapy with ultra-high dose rates. The aim of the present study was to use a murine model of acute skin toxicity to investigate the biologic effect of varying dose rates, time structure, and introducing pauses in the dose delivery. METHODS AND MATERIALS: The right hind limbs of nonanaesthetized mice were irradiated in the entrance plateau of a pencil beam scanning proton beam with 39.3 Gy. Experiment 1 was with varying field dose rates (0.7-80 Gy/s) without repainting, experiment 2 was with varying field dose rates (0.37-80 Gy/s) with repainting, and in experiment 3, the dose was split into 2, 3, 4, or 6 identical deliveries with 2-minute pauses. In total, 320 mice were included, with 6 to 25 mice per group. The endpoints were skin toxicity of different levels up to 25 days after irradiation. RESULTS: The dose rate50, which is the dose rate to induce a response in 50% of the animals, depended on the level of skin toxicity, with the higher toxicity levels displaying a FLASH effect at 0.7-2 Gy/s. Repainting resulted in higher toxicity for the same field dose rate. Splitting the dose into 2 deliveries reduced the FLASH effect, and for 3 or more deliveries, the FLASH effect was almost abolished for lower grades of toxicity. CONCLUSIONS: The dose rate that induced a FLASH effect varied for different skin toxicity levels, which are characterized by a differing degree of sensitivity to radiation dosage. Conclusions on a threshold for the dose rate needed to obtain a FLASH effect can therefore be influenced by the dose sensitivity of the used endpoint. Splitting the total dose into more deliveries compromised the FLASH effect. This can have an impact for fractionation as well as for regions where 2 or more FLASH fields overlap within the same treatment session.

3.
Biomed Phys Eng Express ; 10(1)2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38064731

RESUMO

Organic plastic scintillators are of interest for ionizing radiation dosimetry in megavoltage photon beams because plastic scintillators have a mass density very similar to that of water. This leads to insignificant perturbation of the electron fluence at the point of measurement in a water phantom. This feature is a benefit for dosimetry in strong magnetic fields (e.g., 1.5 T) as found in linacs with magnetic resonance imaging. The objective of this work was to quantify if the light yield per dose for the scintillating fiber BCF-60 material from Saint-Gobain Ceramics and Plastics Inc. is constant regardless of the magnetic flux density. This question is of importance for establishing traceable measurement in MR linacs using this detector type. Experiments were carried out using an accelerator combined with an electromagnet (max 0.7 T). Scintillator probes were read out using chromatic stem-removal techniques based on two optical channels or full spectral information. Reference dosimetry was carried out with PTW31010 and PTW31021 ionization chambers. TOPAS/GEANT4 was used for modelling. The light yield per dose for the BCF-60 was found to be strongly influenced by the magnitude of the magnetic field from about 1 mT to 0.7 T. The light yield per dose increased (1.3 ± 0.2)% (k = 1) from 1 mT to 10 mT and it increased (4.5 ± 0.9)% (k = 1) from 0 T to 0.7 T. Previous studies of the influence of magnetic fields on medical scintillator dosimetry have been unable to clearly identify if observed changes in scintillator response with magnetic field strength were related to changes in dose, stem signal removal, or scintillator light yield. In the current study of BCF-60, we see a clear change in light yield with magnetic field, and none of the other effects.


Assuntos
Radiometria , Contagem de Cintilação , Elétrons , Fótons , Água
4.
Acta Oncol ; 62(11): 1574-1580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37703217

RESUMO

BACKGROUND: The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. MATERIALS AND METHODS: Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. RESULTS: The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. CONCLUSION: With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.


Assuntos
Dermatite , Estomatite , Feminino , Camundongos , Animais , Prótons , Raios X , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Radiat Prot Dosimetry ; 199(14): 1605-1610, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37721066

RESUMO

Determination of beam quality correction factors is crucial for performing accurate alanine pellet dosimetry in non-reference fields. For some complex irradiation geometries, interpolation from literature data is more convenient than an experimental approach to establish these factors. Here we investigate the validity of extracting quality correction factors from literature data based on information on beam qualifiers such as half-value layer (HVL) or effective energy ${E}_{\text{eff}}$. A combination of Monte Carlo calculated dose ratios and a microdosimetric assessment of the relative efficiency allows for numerical evaluation of quality correction factors for a wide array of X-ray qualities. The computational analysis demonstrates that the average energy of the X-ray beam is optimal for characterizing the relative response. Special care should be taken when using the common X-ray beam qualifiers HVL or ${E}_{\text{eff}}$ to determine quality correction factors from literature data.


Assuntos
Alanina , Raios X , Radiografia , Método de Monte Carlo , Eficiência Biológica Relativa
6.
Radiother Oncol ; 175: 178-184, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595175

RESUMO

PURPOSE: Preclinical studies indicate a normal tissue sparing effect when ultra-high dose rate (FLASH) radiation is used, while tumor response is maintained. This differential response has promising perspectives for improved clinical outcome. This study investigates tumor control and normal tissue toxicity of pencil beam scanning (PBS) proton FLASH in a mouse model. METHODS AND MATERIALS: Tumor bearing hind limbs of non-anaesthetized CDF1 mice were irradiated in a single fraction with a PBS proton beam using either conventional (CONV) dose rate (0.33-0.63 Gy/s field dose rate, 244 MeV) or FLASH (71-89 Gy/s field dose rate, 250 MeV). 162 mice with a C3H mouse mammary carcinoma subcutaneously implanted in the foot were irradiated with physical doses of 40-60 Gy (8-14 mice per dose point). The endpoints were tumor control (TC) assessed as no recurrent tumor at 90 days after treatment, the level of acute moist desquamation (MD) to the skin of the foot within 25 days post irradiation, and radiation induced fibrosis (RIF) within 24 weeks post irradiation. RESULTS: TCD50 (dose for 50% tumor control) was similar for CONV and FLASH with values (and 95% confidence intervals) of 49.1 (47.0-51.4) Gy for CONV and 51.3 (48.6-54.2) Gy for FLASH. RIF analysis was restricted to mice with tumor control. Both endpoints showed distinct normal tissue sparing effect of proton FLASH with MDD50 (dose for 50% of mice displaying moist desquamation) of <40.1 Gy for CONV and 52.3 (50.0-54.6) Gy for FLASH, (dose modifying factor at least 1.3) and FD50 (dose for 50% of mice displaying fibrosis) of 48.6 (43.2-50.8) Gy for CONV and 55.6 (52.5-60.1) Gy for FLASH (dose modifying factor of 1.14). CONCLUSIONS: FLASH had the same tumor control as CONV, but reduced normal tissue damage assessed as acute skin damage and radiation induced fibrosis.


Assuntos
Terapia com Prótons , Prótons , Camundongos , Animais , Camundongos Endogâmicos C3H , Recidiva Local de Neoplasia , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Pele/efeitos da radiação , Dosagem Radioterapêutica
7.
Radiother Oncol ; 167: 109-115, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953933

RESUMO

BACKGROUND AND PURPOSE: Preclinical studies indicate a normal tissue sparing effect using ultra-high dose rate (FLASH) radiation with comparable tumor response. Most data so far are based on electron beams with limited utility for human treatments. This study validates the effect of proton FLASH delivered with pencil beam scanning (PBS) in a mouse leg model of acute skin damage and quantifies the normal tissue sparing factor, the FLASH factor, through full dose response curves. MATERIALS AND METHODS: The right hind limb of CDF1 mice was irradiated with a single fraction of proton PBS in the entrance plateau of either a 244 MeV conventional dose rate field or a 250 MeV FLASH field. In total, 301 mice were irradiated in four separate experiments, with 7-21 mice per dose point. The endpoints were the level of acute moist desquamation to the skin of the foot within 25 days post irradiation. RESULTS: The field duration and field dose rate were 61-107 s and 0.35-0.40 Gy/s for conventional dose rate and 0.35-0.73 s and 65-92 Gy/s for FLASH. Full dose response curves for five levels of acute skin damage for both conventional and FLASH dose rate revealed a distinct normal tissue sparing effect with FLASH: across all scoring levels, a 44-58% higher dose was required to give the same biological response with FLASH as compared to the conventional dose rate. CONCLUSIONS: The normal tissue sparing effect of PBS proton FLASH was validated. The FLASH factor was quantified through full dose response curves.


Assuntos
Terapia com Prótons , Prótons , Animais , Humanos , Camundongos , Dosagem Radioterapêutica , Tromboplastina
8.
Phys Med Biol ; 65(21): 215023, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32526719

RESUMO

Organic plastic scintillation detectors (PSDs) are known to produce less light per absorbed dose in highly dense radiations in comparison with e.g. 60Co gamma beams. This so-called ionization density quenching can be experimentally determined by comparison of the scintillator output with the absorbed dose established with a reference detector. The hypothesis of this work was that a newly developed small-core graphite calorimeter (core size: ø5mm × 7mm) can be used as reference for such measurements. The potential benefit of a calorimetric reference would be to have a robust and accurate reference with well-understood dosimetry properties even in high-intensity FLASH beams. As a first step, the hypothesis was tested by comparing previously established quenching parameter estimates for the BCF-60 scintillating material with data obtained with the new instrument at different depths along the central axis of a 170 MeV scanned proton beam. After the calorimetric measurements, scintillator measurements were acquired under equivalent conditions by positioning the PSD in a replica graphite core nominally identical to the core used for calorimetry. To experimentally document details of the irradiations, the spot width was mapped along the central beam axis using a new technique based on a PSD and a time-to-distance conversion procedure. Analysing the proton data in the framework of the Birks model, the graphite calorimeter gave a [Formula: see text] quenching parameter for BCF-60 in agreement with literature values. The consistency between the calorimetric results and the other sources of information supports the validity of the new method, and we therefore aim to apply it for characterization of other detectors in more intense beams where ionometry cannot serve as reference.


Assuntos
Calorimetria/instrumentação , Grafite , Terapia com Prótons , Radiometria/instrumentação , Contagem de Cintilação/instrumentação , Método de Monte Carlo , Plásticos
9.
Phys Med Biol ; 64(9): 095018, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-30909170

RESUMO

Ionization quenching in ion beam dosimetry is often related to the fluence- or dose-averaged linear energy transfer (LET). Both quantities are however averaged over a wide LET range and a mixed field of primary and secondary ions. We propose a novel method to correct the quenched luminescence in scintillators exposed to ion beams. The method uses the energy spectrum of the primaries and accounts for the varying quenched luminescence in heavy, secondary ion tracks through amorphous track structure theory. The new method is assessed against more traditional approaches by correcting the quenched luminescence response from the BCF-12, BCF-60, and 81-0084 plastic scintillators exposed to a 100 MeV pristine proton beam in order to compare the effects of the averaged LET quantities and the secondary ions. Calculations and measurements show that primary protons constitute more than 92% of the energy deposition but account for more than 95% of the luminescence signal in the scintillators. The quenching corrected luminescence signal is in better agreement with the dose measurement when the secondary particles are taken into account. The Birks model provided the overall best quenching corrections, when the quenching corrected signal is adjusted for the number of free model parameters. The quenching parameter kB for the BCF-12 and BCF-60 scintillators is in agreement with literature values and was found to be [Formula: see text] [Formula: see text]m keV-1 for the 81-0084 scintillator. Finally, a fluence threshold for the 100 MeV proton beam was calculated to be of the order of 1010 cm-2, corresponding to 110 Gy, above which the quenching increases non-linearly and the Birks model no longer is applicable.


Assuntos
Transferência Linear de Energia , Prótons , Contagem de Cintilação/instrumentação , Luminescência , Plásticos/química , Contagem de Cintilação/métodos , Contagem de Cintilação/normas , Sensibilidade e Especificidade
10.
Phys Med Biol ; 63(19): 195010, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30183687

RESUMO

Ionization quenching in organic scintillators is usually corrected with methods that require careful assessment of the response relative to that of an ionization chamber. Here, we present a framework to compute ionization quenching correction factors (QCFs) from first principles for organic plastic scintillators exposed to ions. The tool solves the kinetic Blanc equation, of which the Birks model is a simplified solution, based on amorphous track structures models. As a consequence, ionization quenching correction factors can be calculated relying only on standard, tabulated scintillator material properties such as the density, light yield, and decay time. The tool is validated against experimentally obtained QCFs for two different organic plastic scintillators irradiated with protons with linear energy transfers (LETs) between 5-[Formula: see text]. The QCFs computed from amorphous track structure models and the BC-400 scintillator properties deviate less than 3% from the Birks model for LETs below [Formula: see text] and less than 5% for higher LETs. The agreement between experiments and the software for the BCF-12 scintillator is within 2% for LETs below [Formula: see text] and within 10% for LETs above, comparable to the experimental uncertainties. The framework is compiled into the open source software [Formula: see text] available for download. [Formula: see text] enables computations of QCFs in organic plastic scintillators exposed to ions independently of experimentally based quenching parameters in contrast to the Birks model. [Formula: see text] can improve the accuracy of correction factors and understanding of ionization quenching in scintillator dosimetry.


Assuntos
Plásticos , Prótons , Contagem de Cintilação/instrumentação , Transferência Linear de Energia , Método de Monte Carlo , Radiometria , Software
11.
Phys Med Biol ; 63(6): 065001, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29446760

RESUMO

The origin of photons emitted in optical fibres under proton irradiation has been attributed to either entirely Cerenkov radiation or light consisting of fluorescence with a substantial amount of Cerenkov radiation. The source of the light emission is assessed in order to understand why the signal from optical fibres irradiated with protons is reportedly quenching-free. The present study uses the directional emittance of Cerenkov photons in 12 MeV and 20 MeV electron beams to validate a Monte Carlo model for simulating the emittance and transmission of Cerenkov radiation in optical fibres. We show that fewer than 0.01 Cerenkov photons are emitted and guided per 225 MeV proton penetrating the optical fibre, and that the Cerenkov signal in the optical fibre is completely negligible at the Bragg peak. Furthermore, on taking the emittance and guidance of both fluorescence and Cerenkov photons into account, it becomes evident that the reported quenching-free signal in PMMA-based optical fibres during proton irradiation is due to fluorescence.


Assuntos
Fluorescência , Método de Monte Carlo , Imagens de Fantasmas , Plásticos/química , Prótons , Radiometria/instrumentação , Humanos , Fibras Ópticas
12.
PLoS One ; 9(9): e107096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25259740

RESUMO

We investigated whether there is an interaction between distance from residence at birth to nearest power line and domestic radon and traffic-related air pollution, respectively, in relation to childhood leukemia risk. Further, we investigated whether adjusting for potential confounders alters the association between distance to nearest power line and childhood leukemia. We included 1024 cases aged <15, diagnosed with leukemia during 1968-1991, from the Danish Cancer Registry and 2048 controls randomly selected from the Danish childhood population and individually matched by gender and year of birth. We used geographical information systems to determine the distance between residence at birth and the nearest 132-400 kV overhead power line. Concentrations of domestic radon and traffic-related air pollution (NOx at the front door) were estimated using validated models. We found a statistically significant interaction between distance to nearest power line and domestic radon regarding risk of childhood leukemia (p = 0.01) when using the median radon level as cut-off point but not when using the 75th percentile (p = 0.90). We found no evidence of an interaction between distance to nearest power line and traffic-related air pollution (p = 0.73). We found almost no change in the estimated association between distance to power line and risk of childhood leukemia when adjusting for socioeconomic status of the municipality, urbanization, maternal age, birth order, domestic radon and traffic-related air pollution. The statistically significant interaction between distance to nearest power line and domestic radon was based on few exposed cases and controls and sensitive to the choice of exposure categorization and might, therefore, be due to chance.


Assuntos
Instalação Elétrica/efeitos adversos , Exposição Ambiental/efeitos adversos , Leucemia/etiologia , Risco , Adolescente , Fatores Etários , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Estudos de Casos e Controles , Criança , Pré-Escolar , Fatores de Confusão Epidemiológicos , Dinamarca/epidemiologia , Humanos , Lactente , Leucemia/epidemiologia , Razão de Chances , Radônio/efeitos adversos , Sistema de Registros , Características de Residência , Fatores de Risco
13.
Med Phys ; 41(7): 072103, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24989398

RESUMO

PURPOSE: The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. METHODS: Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. RESULTS: For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). CONCLUSIONS: The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.


Assuntos
Radioterapia/instrumentação , Radioterapia/métodos , Ar , Alanina , Algoritmos , Aceleradores de Partículas , Fótons/uso terapêutico , Radiometria/instrumentação , Radiometria/métodos
14.
Med Phys ; 41(5): 052102, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784391

RESUMO

PURPOSE: This study presents an adaptive error detection algorithm (AEDA) for real-time in vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. METHODS: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). RESULTS: The AEDA applied on two in vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was sufficiently symmetric with respect to error and no-error source position constellations. The AEDA was able to correctly identify all false errors represented by mispositioned dosimeters contrary to an error detection algorithm relying on the original reconstruction. CONCLUSIONS: The study demonstrates that the AEDA error identification during HDR/PDR BT relies on a stable dosimeter position rather than on an accurate dosimeter reconstruction, and the AEDA's capacity to distinguish between true and false error scenarios. The study further shows that the AEDA can offer guidance in decision making in the event of potential errors detected with real-time in vivo point dosimetry.


Assuntos
Algoritmos , Braquiterapia/métodos , Erros Médicos/prevenção & controle , Radiometria/métodos , Radioterapia Assistida por Computador/métodos , Braquiterapia/instrumentação , Tomada de Decisões , Dosagem Radioterapêutica , Incerteza
15.
PLoS One ; 8(9): e74435, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066143

RESUMO

BACKGROUND: Increased brain tumour incidence over recent decades may reflect improved diagnostic methods and clinical practice, but remain unexplained. Although estimated doses are low a relationship between radon and brain tumours may exist. OBJECTIVE: To investigate the long-term effect of exposure to residential radon on the risk of primary brain tumour in a prospective Danish cohort. METHODS: During 1993-1997 we recruited 57,053 persons. We followed each cohort member for cancer occurrence from enrolment until 31 December 2009, identifying 121 primary brain tumour cases. We traced residential addresses from 1 January 1971 until 31 December 2009 and calculated radon concentrations at each address using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate-ratios (IRR) and 95% confidence intervals (CI) for the risk of primary brain tumours associated with residential radon exposure with adjustment for age, sex, occupation, fruit and vegetable consumption and traffic-related air pollution. Effect modification by air pollution was assessed. RESULTS: Median estimated radon was 40.5 Bq/m(3). The adjusted IRR for primary brain tumour associated with each 100 Bq/m(3) increment in average residential radon levels was 1.96 (95% CI: 1.07; 3.58) and this was exposure-dependently higher over the four radon exposure quartiles. This association was not modified by air pollution. CONCLUSIONS: We found significant associations and exposure-response patterns between long-term residential radon exposure radon in a general population and risk of primary brain tumours, adding new knowledge to this field. This finding could be chance and needs to be challenged in future studies.


Assuntos
Neoplasias Encefálicas/epidemiologia , Radônio/toxicidade , Neoplasias Encefálicas/etiologia , Dinamarca/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais
16.
Med Phys ; 40(7): 070902, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23822403

RESUMO

In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.


Assuntos
Braquiterapia/métodos , Radiometria/métodos , Braquiterapia/instrumentação , Humanos , Erros Médicos , Radiometria/instrumentação , Dosagem Radioterapêutica
17.
Environ Res ; 118: 130-6, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22749110

RESUMO

High-level occupational radon exposure is an established risk factor for lung cancer. We assessed the long-term association between residential radon and lung cancer risk using a prospective Danish cohort using 57,053 persons recruited during 1993-1997. We followed each cohort member for cancer occurrence until 27 June 2006, identifying 589 lung cancer cases. We traced residential addresses from 1 January 1971 until 27 June 2006 and calculated radon at each of these addresses using information from central databases regarding geology and house construction. Cox proportional hazards models were used to estimate incidence rate ratios (IRR) and 95% confidence intervals (CI) for lung cancer risk associated with residential radon exposure with and without adjustment for sex, smoking variables, education, socio-economic status, occupation, body mass index, air pollution and consumption of fruit and alcohol. Potential effect modification by sex, traffic-related air pollution and environmental tobacco smoke was assessed. Median estimated radon was 35.8 Bq/m(3). The adjusted IRR for lung cancer was 1.04 (95% CI: 0.69-1.56) in association with a 100 Bq/m(3) higher radon concentration and 1.67 (95% CI: 0.69-4.04) among non-smokers. We found no evidence of effect modification. We find a positive association between radon and lung cancer risk consistent with previous studies but the role of chance cannot be excluded as these associations were not statistically significant. Our results provide valuable information at the low-level radon dose range.


Assuntos
Neoplasias Pulmonares/epidemiologia , Neoplasias Induzidas por Radiação/epidemiologia , Radônio/efeitos adversos , Estudos de Coortes , Dinamarca/epidemiologia , Humanos , Incidência , Neoplasias Pulmonares/etiologia
18.
Radiother Oncol ; 100(3): 456-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21963285

RESUMO

BACKGROUND AND PURPOSE: The feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. MATERIALS AND METHODS: Phantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed treatment errors, including interchanged pairs of afterloader guide tubes and 2-20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al(2)O(3):C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated at three dose levels: dwell position, source channel, and fraction. The error criterion incorporated the correlated source position uncertainties and other sources of uncertainty, and it was applied both for the specific phantom patient plans and for a general case (source-detector distance 5-90 mm and position uncertainty 1-4mm). RESULTS: Out of 20 interchanged guide tube errors, time-resolved analysis identified 17 while fraction level analysis identified two. Channel and fraction level comparisons could leave 10mm dosimeter displacement errors unidentified. Dwell position dose rate comparisons correctly identified displacements ≥ 5mm. CONCLUSION: This phantom study demonstrates that Al(2)O(3):C real-time dosimetry can identify applicator displacements ≥ 5mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage of a statistical error criterion.


Assuntos
Braquiterapia/normas , Neoplasias dos Genitais Femininos/radioterapia , Erros Médicos/prevenção & controle , Neoplasias da Próstata/radioterapia , Radiometria/instrumentação , Óxido de Alumínio , Braquiterapia/instrumentação , Fracionamento da Dose de Radiação , Desenho de Equipamento , Estudos de Viabilidade , Feminino , Humanos , Masculino , Método de Monte Carlo , Agulhas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Sensibilidade e Especificidade , Titânio
19.
Phys Med Biol ; 56(10): 3033-45, 2011 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-21508445

RESUMO

A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse with millimetre spatial resolution. To demonstrate the applicability of the system in complex radiotherapy fields, output factors and per cent depth dose measurements were performed in solid water for a 6 MV photon beam and compared with Monte Carlo simulated doses for square fields down to 0.6 cm × 0.6 cm size. No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm field at 10 cm depth. The dose per pulse behaviour compared well with linac target current measurements and accumulated dose measurements, and the system was able to resolve transient dose delivery differences between two Varian linac builds. The system therefore shows promise for reference dosimetry and quality assurance of complex radiotherapy treatments.


Assuntos
Luz , Poliestirenos , Radiometria/instrumentação , Calibragem , Método de Monte Carlo , Dosagem Radioterapêutica , Incerteza
20.
Cancer Causes Control ; 21(11): 1961-4, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20607382

RESUMO

BACKGROUND: In a recent population-based case-control study using 2,400 cases of childhood cancer, we found a statistically significant association between residential radon and acute lymphoblastic leukemia risk. HYPOTHESIS: Traffic exhaust in the air enhances the risk association between radon and childhood leukemia. METHODS: We included 985 cases of childhood leukemia and 1,969 control children. We used validated models to calculate residential radon and street NO(x) concentrations for each home. Conditional logistic regression analyses were used to analyze the effect of radon on childhood leukemia risk within different strata of air pollution and traffic density. RESULTS: The relative risk for childhood leukemia in association with a 10(3) Bq/m(3)-years increase in radon was 1.77 (1.11, 2.82) among those exposed to high levels of NO(x) and 1.23 (0.79, 1.91) for those exposed to low levels of NO(x) (p(interaction,) 0.17). Analyses for different morphological subtypes of leukemia and within different strata of traffic density showed a non-significant pattern of stronger associations between radon and childhood leukemia within strata of higher traffic density at the street address. INTERPRETATION: Air pollution from traffic may enhance the effect of radon on the risk of childhood leukemia. The observed tendency may also be attributed to chance.


Assuntos
Poluição do Ar , Leucemia/epidemiologia , Radônio/análise , Radônio/toxicidade , Emissões de Veículos/toxicidade , Estudos de Casos e Controles , Criança , Dinamarca/epidemiologia , Habitação , Humanos , Leucemia/etiologia , Modelos Logísticos , Neoplasias/epidemiologia , Neoplasias/etiologia , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...