Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(6): e2309385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38009384

RESUMO

In this work, synthetic cells equipped with an artificial signaling pathway that connects an extracellular trigger event to the activation of intracellular transcription are engineered. Learning from nature, this is done via an engineering of responsive enzymes, such that activation of enzymatic activity can be triggered by an external biochemical stimulus. Reversibly deactivated creatine kinase to achieve triggered production of adenosine triphosphate, and a reversibly deactivated nucleic acid polymerase for on-demand synthesis of RNA are engineered. An extracellular, enzyme-activated production of a diffusible zymogen activator is also designed. The key achievement of this work is that the importance of cellularity is illustrated whereby the separation of biochemical partners is essential to resolve their incompatibility, to enable transcription within the confines of a synthetic cell. The herein designed biochemical pathway and the engineered synthetic cells are arguably primitive compared to their natural counterpart. Nevertheless, the results present a significant step toward the design of synthetic cells with responsive behavior, en route from abiotic to life-like cell mimics.


Assuntos
Células Artificiais , Precursores Enzimáticos , Precursores Enzimáticos/metabolismo
2.
Nat Commun ; 13(1): 4861, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982075

RESUMO

We present three classes of chemical zymogens established around the protein cysteinome. In each case, the cysteine thiol group was converted into a mixed disulfide: with a small molecule, a non-degradable polymer, or with a fast-depolymerizing fuse polymer (ZLA). The latter was a polydisulfide based on naturally occurring molecule, lipoic acid. Zymogen designs were applied to cysteine proteases and a kinase. In each case, enzymatic activity was successfully masked in full and reactivated by small molecule reducing agents. However, only ZLA could be reactivated by protein activators, demonstrating that the macromolecular fuse escapes the steric bulk created by the protein globule, collects activation signal in solution, and relays it to the active site of the enzyme. This afforded first-in-class chemical zymogens that are activated via protein-protein interactions. We also document zymogen exchange reactions whereby the polydisulfide is transferred between the interacting proteins via the "chain transfer" bioconjugation mechanism.


Assuntos
Cisteína , Precursores Enzimáticos , Cisteína/química , Dissulfetos/química , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Polímeros
3.
Adv Drug Deliv Rev ; 170: 281-293, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486005

RESUMO

A vast range of biomedical applications relies on the specificity of interactions between an antigen and its cognate receptor or antibody. This specificity can be highest when said antigen is a non-natural (synthetic) molecule introduced into a biological setting as a bio-orthogonal ligand. This review aims to present the development of this methodology from the early discovery of haptens a century ago to the recent clinical trials. We discuss such methodologies as antibody recruitment, artificial internalizing receptors and chemically induced dimerization, present the use of chimeric receptors and/or bispecific antibodies to achieve drug targeting and transcytosis, and illustrate how these platforms most impressively found use in the engineering of therapeutic cells such as the chimeric antigen receptor cells. This review aims to be of interest to a broad scientific audience and to spur the development of synthetic artificial ligands for biomedical applications.


Assuntos
Anticorpos Biespecíficos/química , Engenharia Celular , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...