Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 273, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177201

RESUMO

Rapidly renewable tissues adapt different strategies to cope with environmental insults. While tissue repair is associated with increased intestinal stem cell (ISC) proliferation and accelerated tissue turnover rates, reduced calorie intake triggers a homeostasis-breaking process causing adaptive resizing of the gut. Here we show that activins are key drivers of both adaptive and regenerative growth. Activin-ß (Actß) is produced by stem and progenitor cells in response to intestinal infections and stimulates ISC proliferation and turnover rates to promote tissue repair. Dawdle (Daw), a divergent Drosophila activin, signals through its receptor, Baboon, in progenitor cells to promote their maturation into enterocytes (ECs). Daw is dynamically regulated during starvation-refeeding cycles, where it couples nutrient intake with progenitor maturation and adaptive resizing of the gut. Our results highlight an activin-dependent mechanism coupling nutrient intake with progenitor-to-EC maturation to promote adaptive resizing of the gut and further establish activins as key regulators of adult tissue plasticity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ativinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Enterócitos/metabolismo , Proliferação de Células , Drosophila melanogaster/metabolismo
3.
FEBS Lett ; 597(19): 2416-2432, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567762

RESUMO

Tumor necrosis factor (TNF)-α is a highly conserved proinflammatory cytokine with important functions in immunity, tissue repair, and cellular homeostasis. Due to the simplicity of the Drosophila TNF-TNF receptor (TNFR) system and a broad genetic toolbox, the fly has played a pivotal role in deciphering the mechanisms underlying TNF-mediated physiological and pathological functions. In this review, we summarize the recent advances in our understanding of how local and systemic sources of Egr/TNF contribute to its antitumor and tumor-promoting properties, and its emerging functions in adaptive growth responses, sleep regulation, and adult tissue homeostasis. The recent annotation of TNF as an adipokine and its indisputable contribution to obesity- and cancer-associated metabolic diseases have provoked a new area of research focusing on its dual function in regulating immunity and energy homeostasis. Here, we discuss the role of TNFR signaling in coupling immune and metabolic processes and how this might be relevant in the adaption of host to environmental stresses, or, in the case of obesity, promote metabolic derangements and disease.

4.
Sci Adv ; 9(23): eadd4977, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294765

RESUMO

It is well established that tumor necrosis factor (TNF) plays an instrumental role in orchestrating the metabolic disorders associated with late stages of cancers. However, it is not clear whether TNF/TNF receptor (TNFR) signaling controls energy homeostasis in healthy individuals. Here, we show that the highly conserved Drosophila TNFR, Wengen (Wgn), is required in the enterocytes (ECs) of the adult gut to restrict lipid catabolism, suppress immune activity, and maintain tissue homeostasis. Wgn limits autophagy-dependent lipolysis by restricting cytoplasmic levels of the TNFR effector, TNFR-associated factor 3 (dTRAF3), while it suppresses immune processes through inhibition of the dTAK1/TAK1-Relish/NF-κB pathway in a dTRAF2-dependent manner. Knocking down dTRAF3 or overexpressing dTRAF2 is sufficient to suppress infection-induced lipid depletion and immune activation, respectively, showing that Wgn/TNFR functions as an intersection between metabolism and immunity allowing pathogen-induced metabolic reprogramming to fuel the energetically costly task of combatting an infection.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , NF-kappa B/metabolismo , Metabolismo Energético , Lipídeos , MAP Quinase Quinase Quinases/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
5.
Nat Commun ; 12(1): 2070, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824334

RESUMO

The Drosophila tumour necrosis factor (TNF) ligand-receptor system consists of a unique ligand, Eiger (Egr), and two receptors, Grindelwald (Grnd) and Wengen (Wgn), and therefore provides a simple system for exploring the interplay between ligand and receptors, and the requirement for Grnd and Wgn in TNF/Egr-mediated processes. Here, we report the crystallographic structure of the extracellular domain (ECD) of Grnd in complex with Egr, a high-affinity hetero-hexameric assembly reminiscent of human TNF:TNFR complexes. We show that ectopic expression of Egr results in internalisation of Egr:Grnd complexes in vesicles, a step preceding and strictly required for Egr-induced apoptosis. We further demonstrate that Wgn binds Egr with much reduced affinity and is localised in intracellular vesicles that are distinct from those containing Egr:Grnd complexes. Altogether, our data provide insight into ligand-mediated activation of Grnd and suggest that distinct affinities of TNF ligands for their receptors promote different and non-redundant cellular functions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Vesículas Citoplasmáticas/metabolismo , Proteínas de Drosophila/química , Endocitose , Discos Imaginais/citologia , Discos Imaginais/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas
6.
Wiley Interdiscip Rev Dev Biol ; 9(6): e378, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32174007

RESUMO

Multicellular organisms have evolved organs and tissues with highly specialized tasks. For instance, nutrients are assimilated by the gut, sensed, processed, stored, and released by adipose tissues and liver to provide energy consumed by peripheral organ activities. The function of each organ is modified by local clues and systemic signals derived from other organs to ensure a coordinated response accommodating the physiological needs of the organism. The intestine, which represents one of the largest interfaces between the internal and external environment, plays a key role in sensing and relaying environmental inputs such as nutrients and microbial derivatives to other organs to produce systemic responses. In turn, gut physiology and immunity are regulated by multiple signals emanating from other organs including the brain and the adipose tissues. In this review, we highlight physiological processes where the gut serves as a key organ in coupling systemic signals or environmental cues with organism growth, metabolism, immune activity, aging, or behavior. Robust strategies involving intraorgan and interorgan signaling pathways have evolved to preserve gut size in homeostatic conditions and restrict growth during damage-induced regenerative phases. Here we review some of the mechanisms that maintain gut size homeostasis and point out known examples of homeostasis-breaking events that promote gut plasticity to accommodate changes in the external or internal environment. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.


Assuntos
Drosophila melanogaster/genética , Aptidão Genética/genética , Homeostase , Regeneração/genética , Células-Tronco Adultas/citologia , Animais , Autorrenovação Celular/genética , Transdução de Sinais/genética
7.
Med Sci (Paris) ; 33(6-7): 637-641, 2017.
Artigo em Francês | MEDLINE | ID: mdl-28990566

RESUMO

Body size is an intrinsic property of living organisms that is intimately linked to the developmental program to produce fit individuals with proper proportions. Final size is the result of both genetic determinants and sophisticated mechanisms adapting size to available resources. Even though organs grow according to autonomous programs, some coordination mechanisms ensure that the different body parts adjust their growth with the rest of the body. In Drosophila, Dilp8, a hormone of the Insulin/Relaxin family is a key player in this inter-organs coordination and is required together with its receptor Lgr3 to limit developmental variability. Recently, the transcriptional co-activator Yki (homologue of YAP/TAZ factors in mammals) was shown to regulate dilp8 expression and contribute to the coordination of organ growth in Drosophila.


Assuntos
Crescimento e Desenvolvimento , Insulinas/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/farmacologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/efeitos dos fármacos , Crescimento e Desenvolvimento/genética , Humanos , Insulinas/genética , Insulinas/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transdução de Sinais/efeitos dos fármacos
8.
Nat Commun ; 7: 13505, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874005

RESUMO

Coordination of organ growth during development is required to generate fit individuals with fixed proportions. We recently identified Drosophila Dilp8 as a key hormone in coupling organ growth with animal maturation. In addition, dilp8 mutant flies exhibit elevated fluctuating asymmetry (FA) demonstrating a function for Dilp8 in ensuring developmental stability. The signals regulating Dilp8 activity during normal development are not yet known. Here, we show that the transcriptional co-activators of the Hippo (Hpo) pathway, Yorkie (Yki, YAP/TAZ) and its DNA-binding partner Scalloped (Sd), directly regulate dilp8 expression through a Hpo-responsive element (HRE) in the dilp8 promoter. We further demonstrate that mutation of the HRE by genome-editing results in animals with increased FA, thereby mimicking full dilp8 loss of function. Therefore, our results indicate that growth coordination of organs is connected to their growth status through a feedback loop involving Hpo and Dilp8 signalling pathways.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Deleção de Genes , Edição de Genes , Genótipo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
9.
Curr Biol ; 25(20): 2723-9, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26441350

RESUMO

Early transplantation and grafting experiments suggest that body organs follow autonomous growth programs [1-3], therefore pointing to a need for coordination mechanisms to produce fit individuals with proper proportions. We recently identified Drosophila insulin-like peptide 8 (Dilp8) as a relaxin and insulin-like molecule secreted from growing tissues that plays a central role in coordinating growth between organs and coupling organ growth with animal maturation [4, 5]. Deciphering the function of Dilp8 in growth coordination relies on the identification of the receptor and tissues relaying Dilp8 signaling. We show here that the orphan receptor leucine-rich repeat-containing G protein-coupled receptor 3 (Lgr3), a member of the highly conserved family of relaxin family peptide receptors (RXFPs), mediates the checkpoint function of Dilp8 for entry into maturation. We functionally identify two Lgr3-positive neurons in each brain lobe that are required to induce a developmental delay upon overexpression of Dilp8. These neurons are located in the pars intercerebralis, an important neuroendocrine area in the brain, and make physical contacts with the PTTH neurons that ultimately control the production and release of the molting steroid ecdysone. Reducing Lgr3 levels in these neurons results in adult flies exhibiting increased fluctuating bilateral asymmetry, therefore recapitulating the phenotype of dilp8 mutants. Our work reveals a novel Dilp8/Lgr3 neuronal circuitry involved in a feedback mechanism that ensures coordination between organ growth and developmental transitions and prevents developmental variability.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Receptores Acoplados a Proteínas G/genética , Animais , Encéfalo/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Neurônios/metabolismo , Tamanho do Órgão , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
10.
Nature ; 522(7557): 482-6, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-25874673

RESUMO

Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras(V12)/scrib(-/-) tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Receptores do Fator de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/genética , Moléculas de Adesão Celular/metabolismo , Divisão Celular/genética , Polaridade Celular/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 1 da Matriz/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Dados de Sequência Molecular , Invasividade Neoplásica/genética , Neoplasias/enzimologia , Neoplasias/genética , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Proteínas ras/genética , Proteínas ras/metabolismo
13.
Science ; 336(6081): 582-5, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22556251

RESUMO

Little is known about how organ growth is monitored and coordinated with the developmental timing in complex organisms. In insects, impairment of larval tissue growth delays growth and morphogenesis, revealing a coupling mechanism. We carried out a genetic screen in Drosophila to identify molecules expressed by growing tissues participating in this coupling and identified dilp8 as a gene whose silencing rescues the developmental delay induced by abnormally growing tissues. dilp8 is highly induced in conditions where growth impairment produces a developmental delay. dilp8 encodes a peptide for which expression and secretion are sufficient to delay metamorphosis without affecting tissue integrity. We propose that Dilp8 peptide is a secreted signal that coordinates the growth status of tissues with developmental timing.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Discos Imaginais/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metamorfose Biológica , Animais , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ecdisona/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Sistema de Sinalização das MAP Quinases , Interferência de RNA , Deleção de Sequência , Fatores de Tempo , Asas de Animais/crescimento & desenvolvimento
14.
J Biol Chem ; 283(45): 31256-67, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18765666

RESUMO

The mammalian spliceosome has mainly been studied using proteomics. The isolation and comparison of different splicing intermediates has revealed the dynamic association of more than 200 splicing factors with the spliceosome, relatively few of which have been studied in detail. Here, we report the characterization of the Drosophila homologue of microfibril-associated protein 1 (dMFAP1), a previously uncharacterized protein found in some human spliceosomal fractions ( Jurica, M. S., and Moore, M. J. (2003) Mol. Cell 12, 5-14 ). We show that dMFAP1 binds directly to the Drosophila homologue of Prp38p (dPrp38), a tri-small nuclear ribonucleoprotein component ( Xie, J., Beickman, K., Otte, E., and Rymond, B. C. (1998) EMBO J. 17, 2938-2946 ), and is required for pre-mRNA processing. dMFAP1, like dPrp38, is essential for viability, and our in vivo data show that cells with reduced levels of dMFAP1 or dPrp38 proliferate more slowly than normal cells and undergo apoptosis. Consistent with this, double-stranded RNA-mediated depletion of dPrp38 or dMFAP1 causes cells to arrest in G(2)/M, and this is paralleled by a reduction in mRNA levels of the mitotic phosphatase string/cdc25. Interestingly double-stranded RNA-mediated depletion of a wide range of core splicing factors elicits a similar phenotype, suggesting that the observed G(2)/M arrest might be a general consequence of interfering with spliceosome function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Divisão Celular/fisiologia , Proteínas Contráteis/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fase G2/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Spliceossomos/metabolismo , ras-GRF1/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas Contráteis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas da Matriz Extracelular/genética , Proteínas Tirosina Fosfatases/genética , Fatores de Processamento de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spliceossomos/genética , ras-GRF1/genética
15.
J Biol Chem ; 282(20): 14752-60, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17392269

RESUMO

The Drosophila gene, pixie, is an essential gene required for normal growth and translation. Pixie is the fly ortholog of human RLI, which was first identified as an RNase L inhibitor, and yeast Rli1p, which has recently been shown to play a role in translation initiation and ribosome biogenesis. These proteins are all soluble ATP-binding cassette proteins with two N-terminal iron-sulfur clusters. Here we demonstrate that Pixie can be isolated from cells in complex with eukaryotic translation initiation factor 3 and ribosomal proteins of the small subunit. In addition, our analysis of polysome profiles reveals that double-stranded RNA interference-mediated depletion of Pixie results in an increase in empty 80 S ribosomes and a corresponding decrease in polysomes. Thus Pixie is required for normal levels of translation initiation. We also find that Pixie associates with the 40 S subunit on sucrose density gradients in an ATP-dependent manner. Our observations are consistent with Pixie playing a catalytic role in the assembly of complexes required for translation initiation. Thus, the function of this soluble ATP-binding cassette domain protein family in translation initiation has been conserved from yeast through to higher eukaryotes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Polirribossomos/metabolismo , Animais , Linhagem Celular , Drosophila melanogaster , Humanos , Ligação Proteica/fisiologia
16.
J Virol ; 79(16): 10776-87, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16051869

RESUMO

Early results suggested that the amphotropic murine leukemia virus (A-MLV) does not enter cells via endocytosis through clathrin-coated pits and this gammaretrovirus has therefore been anticipated to fuse directly with the plasma membrane. However, here we present data implicating a caveola-mediated endocytic entry route for A-MLV via its receptor Pit2. Caveolae belong to the cholesterol-rich microdomains characterized by resistance to nonionic detergents such as Triton X-100. Extraction of murine fibroblastic NIH 3T3 cells in cold Triton X-100 showed the presence of the A-MLV receptor Pit2 in detergent-insoluble microdomains. Using coimmunoprecipitation of cell extracts, we were able to demonstrate direct association of Pit2 with caveolin-1, the structural protein of caveolae. Other investigations revealed that A-MLV infection in contrast to vesicular stomatitis virus infection is a slow process (t(1/2) approximately 5 h), which is dependent on plasma membrane cholesterol but independent of NH4Cl treatment of cells; NH4Cl impairs entry via clathrin-coated pits. Furthermore, expression of dominant-negative caveolin-1 decreased the susceptibility to infection via Pit2 by approximately 70%. These results show that A-MLV can enter cells via a caveola-dependent entry route. Moreover, increase in A-MLV infection by treatment with okadaic acid as well as entry of fusion-defective fluorescent A-MLV virions in NIH 3T3 cells further confirmed our findings and show that A-MLV can enter mouse fibroblasts via an endocytic entry route involving caveolae. Finally, we also found colocalization of fusion-defective fluorescent A-MLV virions with caveolin-1 in NIH 3T3 cells. This is the first time substantial evidence has been presented implicating the existence of a caveola-dependent endocytic entry pathway for a retrovirus.


Assuntos
Cavéolas/fisiologia , Endocitose , Vírus da Leucemia Murina/fisiologia , Animais , Caveolina 1 , Caveolinas/fisiologia , Colesterol/fisiologia , Concentração de Íons de Hidrogênio , Proteínas de Membrana/fisiologia , Camundongos , Células NIH 3T3 , Ácido Okadáico/farmacologia , Receptores Virais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...