Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 13: 45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180827

RESUMO

BACKGROUND: The secondary alcohol 2-butanol has many important applications, e.g., as a solvent. Industrially, it is usually made by sulfuric acid-catalyzed hydration of butenes. Microbial production of 2-butanol has also been attempted, however, with little success as witnessed by the low titers and yields reported. Two important reasons for this, are the growth-hampering effect of 2-butanol on microorganisms, and challenges associated with one of the key enzymes involved in its production, namely diol dehydratase. RESULTS: We attempt to link the metabolism of an engineered Lactococcus lactis strain, which possesses all enzyme activities required for fermentative production of 2-butanol from glucose, except for diol dehydratase, which acts on meso-2,3-butanediol (mBDO), with that of a Lactobacillus brevis strain which expresses a functional dehydratase natively. We demonstrate growth-coupled production of 2-butanol by the engineered L. lactis strain, when co-cultured with L. brevis. After fine-tuning the co-culture setup, a titer of 80 mM (5.9 g/L) 2-butanol, with a high yield of 0.58 mol/mol is achieved. CONCLUSIONS: Here, we demonstrate that it is possible to link the metabolism of two bacteria to achieve redox-balanced production of 2-butanol. Using a simple co-cultivation setup, we achieved the highest titer and yield from glucose in a single fermentation step ever reported. The data highlight the potential that lies in harnessing microbial synergies for producing valuable compounds.

2.
ACS Synth Biol ; 9(3): 655-670, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32078772

RESUMO

Saccharopolyspora erythraea is used for industrial erythromycin production. To explore the physiological role of intracellular energy state in metabolic regulation by S. erythraea, we initially overexpressed the F1 part of the endogenous F1F0-ATPase in the high yielding erythromycin producing strain E3. The F1-ATPase expression resulted in lower [ATP]/[ADP] ratios, which was accompanied by a strong increase in the production of a reddish pigment and a decreased erythromycin production. Subsequent transcriptional analysis revealed that the lower intracellular [ATP]/[ADP] ratios exerted a pleotropic regulation on the metabolism of S. erythraea. The lower [ATP]/[ADP] ratios induced physiological changes to restore the energy balance, mainly via pathways that tend to produce ATP or regenerate NADH. The F1-ATPase overexpression strain exhibited a state of redox stress, which was correlated to an alteration of electron transport at the branch of the terminal oxidases, and S. erythraea channeled the enhanced glycolytic flux toward a reddish pigment in order to reduce NADH formation. The production of erythromycin was decreased, which is in accordance with the net ATP requirement and the excess NADH formed through this pathway. Partial growth inhibition by apramycin increased the intracellular [ATP]/[ADP] ratios and demonstrated a positive correlation between [ATP]/[ADP] ratios and erythromycin synthesis. Finally, overexpression of the entire F1F0-ATPase complex resulted in 28% enhanced erythromycin production and markedly reduced pigment synthesis in E3. The work illustrates a feasible strategy to optimize the distribution of fluxes in secondary metabolism.


Assuntos
Coenzimas/genética , Eritromicina/biossíntese , Engenharia Metabólica/métodos , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Acetilcoenzima A/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Coenzimas/metabolismo , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica , Microrganismos Geneticamente Modificados , NAD/genética , NAD/metabolismo , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Metabolismo Secundário
3.
J Dairy Sci ; 102(9): 7800-7806, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31279547

RESUMO

Streptococcus thermophilus is a lactic acid bacterium widely used in the syntrophic fermentation of milk into yogurt and cheese. Streptococcus thermophilus has adapted to ferment milk primarily through reductive genome evolution but also through acquisition of genes conferring proto-cooperation with Lactobacillus bulgaricus and efficient metabolism of milk macronutrients. Genomic analysis of Strep. thermophilus strains suggests that mobile genetic elements have contributed to genomic evolution through horizontal gene transfer and genomic plasticity. We previously used the endogenous type II CRISPR-Cas [clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated sequences (Cas)] system in Strep. thermophilus to isolate derivatives lacking the chromosomal mobile genetic element and expandable island that display decreased fitness under routine culturing conditions. Of note, the Lac operon and Leloir pathway genes were deleted in the largest expendable genomic island (102 kbp), rendering the strain incapable of acidifying milk. However, the removal of other open reading frames in the same island had unclear effects on the fitness and regulatory networks of Strep. thermophilus. To uncover the physiological basis for the observed phenotypic changes and underlying regulatory networks affected by deletion of the 102-kbp genomic island in Strep. thermophilus, we analyzed the transcriptome of the mutant that lacked ∼5% of its genome. In addition to the loss of transcripts encoded by the deleted material, we detected a total of 56 genes that were differentially expressed, primarily encompassing 10 select operons. Several predicted metabolic pathways were affected, including amino acid and purine metabolism, oligopeptide transport, and iron transport. Collectively, these results suggest that deletion of a 102-kb genomic island in Strep. thermophilus influences compensatory transcription of starvation stress response genes and metabolic pathways involved in important niche-related adaptation.


Assuntos
Ilhas Genômicas , Leite/microbiologia , Streptococcus thermophilus/metabolismo , Iogurte/microbiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fermentação , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Genômica , Ácido Láctico/metabolismo , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/genética , Transcriptoma
4.
Genome Biol Evol ; 10(3): 982-998, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617810

RESUMO

Clostridiodes difficile strains from the NAPCR1/ST54 and NAP1/ST01 types have caused outbreaks despite of their notable differences in genome diversity. By comparing whole genome sequences of 32 NAPCR1/ST54 isolates and 17 NAP1/ST01 recovered from patients infected with C. difficile we assessed whether mutation, homologous recombination (r) or nonhomologous recombination (NHR) through lateral gene transfer (LGT) have differentially shaped the microdiversification of these strains. The average number of single nucleotide polymorphisms (SNPs) in coding sequences (NAPCR1/ST54 = 24; NAP1/ST01 = 19) and SNP densities (NAPCR1/ST54 = 0.54/kb; NAP1/ST01 = 0.46/kb) in the NAPCR1/ST54 and NAP1/ST01 isolates was comparable. However, the NAP1/ST01 isolates showed 3× higher average dN/dS rates (8.35) that the NAPCR1/ST54 isolates (2.62). Regarding r, whereas 31 of the NAPCR1/ST54 isolates showed 1 recombination block (3,301-8,226 bp), the NAP1/ST01 isolates showed no bases in recombination. As to NHR, the pangenome of the NAPCR1/ST54 isolates was larger (4,802 gene clusters, 26% noncore genes) and more heterogeneous (644 ± 33 gene content changes) than that of the NAP1/ST01 isolates (3,829 gene clusters, ca. 6% noncore genes, 129 ± 37 gene content changes). Nearly 55% of the gene content changes seen among the NAPCR1/ST54 isolates (355 ± 31) were traced back to MGEs with putative genes for antimicrobial resistance and virulence factors that were only detected in single isolates or isolate clusters. Congruently, the LGT/SNP rate calculated for the NAPCR1/ST54 isolates (26.8 ± 2.8) was 4× higher than the one obtained for the NAP1/ST1 isolates (6.8 ± 2.0). We conclude that NHR-LGT has had a greater role in the microdiversification of the NAPCR1/ST54 strains, opposite to the NAP1/ST01 strains, where mutation is known to play a more prominent role.


Assuntos
Clostridioides difficile/genética , Infecções por Clostridium/genética , Transferência Genética Horizontal/genética , Variação Genética , Infecções por Clostridium/microbiologia , Surtos de Doenças , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Genótipo , Humanos , Mutação , Virulência/genética
5.
Front Microbiol ; 8: 553, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443071

RESUMO

Lactobacillus acidophilus NCFM is a well-characterized probiotic microorganism, supported by a decade of genomic and functional phenotypic investigations. L. acidophilus deficient in lipoteichoic acid (LTA), a major immunostimulant in Gram-positive bacteria, has been shown to shift immune system responses in animal disease models. However, the pleiotropic effects of removing LTA from the cell surface in lactobacilli are unknown. In this study, we surveyed the global transcriptional and extracellular protein profiles of two strains of L. acidophilus deficient in LTA. Twenty-four differentially expressed genes specific to the LTA-deficient strains were identified, including a predicted heavy metal resistance operon and several putative peptidoglycan hydrolases. Cell morphology and manganese sensitivity phenotypes were assessed in relation to the putative functions of differentially expressed genes. LTA-deficient L. acidophilus exhibited elongated cellular morphology and their growth was severely inhibited by elevated manganese concentrations. Exoproteomic surveys revealed distinct changes in the composition and relative abundances of several extracellular proteins and showed a bias of intracellular proteins in LTA-deficient strains of L. acidophilus. Taken together, these results elucidate the impact of ltaS deletion on the transcriptome and extracellular proteins of L. acidophilus, suggesting roles of LTA in cell morphology and ion homeostasis as a structural component of the Gram positive cell wall.

6.
Genome Biol Evol ; 8(9): 2841-55, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27576538

RESUMO

Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes.


Assuntos
Clostridioides difficile/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Evolução Molecular , Polimorfismo Genético , Sistemas CRISPR-Cas , Clostridioides difficile/classificação , Filogenia
7.
Int J Biol Macromol ; 75: 338-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25661878

RESUMO

Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch degrading enzymes and critically important for their function. The affinity towards a variety of starch granules as well as soluble poly- and oligosaccharides of barley α-amylase 1 (AMY1) wild-type and mutants of two SBSs (SBS1 and SBS2) was investigated using Langmuir binding analysis, confocal laser scanning microscopy, affinity gel electrophoresis and surface plasmon resonance to unravel functional roles of the SBSs. SBS1 was critical for binding to different starch types as Kd increased by 7-62-fold or was not measurable upon mutation. By contrast SBS2 was particularly important for binding to soluble polysaccharides and oligosaccharides with α-1,6 linkages, suggesting that branch points are key structural elements in recognition by SBS2. Mutation at both SBS1 and SBS2 eliminated binding to all starch granule types tested. Taken together, the findings indicate that the two SBSs act in concert to localize AMY1 to the starch granule surface and that SBS2 works synergistically with the active site in the degradation of amylopectin.


Assuntos
Amilases/química , Hordeum/enzimologia , Amido/química , Adsorção , Amilases/metabolismo , Sítios de Ligação , Biocatálise , Eletroforese em Gel de Ágar , Microscopia Confocal , Modelos Moleculares , Mutação , Oligossacarídeos/química , Ligação Proteica , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
8.
BMC Genomics ; 14: 312, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23663691

RESUMO

BACKGROUND: Probiotic bifidobacteria in combination with prebiotic carbohydrates have documented positive effects on human health regarding gastrointestinal disorders and improved immunity, however the selective routes of uptake remain unknown for most candidate prebiotics. The differential transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and ß-linked hexoses, and ß-xylosides. RESULTS: The overall transcriptome was modulated dependent on the type of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and ß-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose, raffinose, stachyose, xylobiose and ß-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities in the breadth and selectivity of prebiotic utilization by bifidobacteria. CONCLUSION: This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights into the ability of this probiotic microbe to utilize indigestible carbohydrates in the human gastrointestinal tract.


Assuntos
Bifidobacterium/efeitos dos fármacos , Bifidobacterium/genética , Perfilação da Expressão Gênica , Oligossacarídeos/farmacologia , Prebióticos , Transcrição Gênica/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Mineração de Dados , Variação Genética/genética , Genômica , Família Multigênica/genética , Regulação para Cima/efeitos dos fármacos
9.
Food Funct ; 4(5): 784-93, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23580006

RESUMO

The present study aimed at examining oligosaccharides (OS) for potential stimulation of probiotic bacteria. Nineteen structurally well-defined candidate OS covering groups of ß-glucosides, α-glucosides and α-galactosides with degree of polymerization 2-4 were prepared in >100 mg amounts by chemoenzymatic synthesis (i.e. reverse phosphorolysis or transglycosylation). Fourteen of the OS are not naturally occurring and five (ß-D-glucosyl-fructose, ß-D-glucosyl-xylitol, α-glucosyl-(1,4)-D-mannose, α-glucosyl-(1,4)-D-xylose; α-glucosyl-(1,4)-L-fucose) have recently been synthesized for the first time. These OS have not been previously tested for effects of bacterial growth and here the ability of all 19 OS to support growth of four gastrointestinal bacteria: three probiotic bacteria Bifidobacterium lactis, Bifidobacterium longum, and Lactobacillus acidophilus, and one commensal bacterium, Bacteroides vulgatus has been evaluated in monocultures. The disaccharides ß-D-glucosyl-xylitol and ß-D-glucosyl-(1,4)-xylose noticeably stimulated growth yields of L. acidophilus NCFM, and additionally, ß-D-glucosyl-(1,4)-xylose stimulated B. longum Bl-05. α-Glucosyl-(1,4)-glucosamine and α-glucosyl-(1,4)-N-acetyl-glucosamine enhanced the growth rate of B. animalis subsp. lactis and B. longum Bl-05, whereas L. acidophilus NCFM and Bac. vulgatus did not grow on these OS. α-Galactosyl-(1,6)-α-galactosyl-(1,6)-glucose advanced the growth rate of B. animalis subsp. lactis and L. acidophilus NCFM. Thus several of the structurally well-defined OS supported growth of beneficial gut bacteria. This reflects a broad specificity of their sugar transporters for OS, including specificity for non-naturally occurring OS, hence showing promise for design of novel prebiotics.


Assuntos
Bacteroides/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Lactobacillus acidophilus/crescimento & desenvolvimento , Oligossacarídeos/química , Bacteroides/isolamento & purificação , Bifidobacterium/isolamento & purificação , Dissacarídeos/metabolismo , Humanos , Lactobacillus acidophilus/isolamento & purificação , Manose/metabolismo , Prebióticos/análise , Probióticos , Xilose/metabolismo
10.
Proc Natl Acad Sci U S A ; 108(43): 17785-90, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22006318

RESUMO

Probiotic microbes rely on their ability to survive in the gastrointestinal tract, adhere to mucosal surfaces, and metabolize available energy sources from dietary compounds, including prebiotics. Genome sequencing projects have proposed models for understanding prebiotic catabolism, but mechanisms remain to be elucidated for many prebiotic substrates. Although ß-galactooligosaccharides (GOS) are documented prebiotic compounds, little is known about their utilization by lactobacilli. This study aimed to identify genetic loci in Lactobacillus acidophilus NCFM responsible for the transport and catabolism of GOS. Whole-genome oligonucleotide microarrays were used to survey the differential global transcriptome during logarithmic growth of L. acidophilus NCFM using GOS or glucose as a sole source of carbohydrate. Within the 16.6-kbp gal-lac gene cluster, lacS, a galactoside-pentose-hexuronide permease-encoding gene, was up-regulated 5.1-fold in the presence of GOS. In addition, two ß-galactosidases, LacA and LacLM, and enzymes in the Leloir pathway were also encoded by genes within this locus and up-regulated by GOS stimulation. Generation of a lacS-deficient mutant enabled phenotypic confirmation of the functional LacS permease not only for the utilization of lactose and GOS but also lactitol, suggesting a prominent role of LacS in the metabolism of a broad range of prebiotic ß-galactosides, known to selectively modulate the beneficial gut microbiota.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Lactobacillus acidophilus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oligossacarídeos/farmacocinética , Prebióticos , beta-Galactosidase/metabolismo , DNA Complementar/genética , Lactobacillus acidophilus/genética , Análise em Microsséries , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta-Galactosidase/genética
11.
Biochemistry ; 48(32): 7686-97, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19606835

RESUMO

Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)(8)-barrel and the noncatalytic C-terminal domain, respectively. Site-directed mutagenesis of Trp(278) and Trp(279), stacking onto adjacent ligand glucosyl residues at SBS1, and of Tyr(380) and His(395), making numerous ligand contacts at SBS2, suggested that SBS1 and SBS2 act synergistically in degradation of starch granules. While SBS1 makes the major contribution to binding and hydrolysis of starch granules, SBS2 exhibits a higher affinity for the starch mimic beta-cyclodextrin. Compared to that of wild-type AMY1, the K(d) of starch granule binding by the SBS1 W278A, W279A, and W278A/W279A mutants thus increased 15-35 times; furthermore, the k(cat)/K(m) of W278A/W279A was 2%, whereas both affinity and activity for Y380A at SBS2 were 10% of the wild-type values. Dual site double and triple SBS1/SBS2 substitutions eliminated binding to starch granules, and the k(cat)/K(m) of W278A/W279A/Y380A AMY1 was only 0.4% of the wild-type value. Surface plasmon resonance analysis of mutants showed that beta-cyclodextrin binds to SBS2 and SBS1 with K(d,1) and K(d,2) values of 0.07 and 1.40 mM, respectively. A model that accounts for the observed synergy in starch hydrolysis, where SBS1 and SBS2 bind ordered and free alpha-glucan chains, respectively, thus targeting the enzyme to single alpha-glucan chains accessible for hydrolysis, is proposed. SBS1 and SBS2 also influence the kinetics of hydrolysis for amylose and maltooligosaccharides, the degree of multiple attack on amylose, and subsite binding energies.


Assuntos
Metabolismo dos Carboidratos , Hordeum/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Amido/metabolismo , alfa-Amilases/química , alfa-Amilases/metabolismo , Sequência de Aminoácidos , Amilose/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , alfa-Amilases/genética , beta-Ciclodextrinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...