Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 219: 118563, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594748

RESUMO

Nitrous oxide is a highly potent greenhouse gas and one of the main contributors to the greenhouse gas footprint of wastewater treatment plants (WWTP). Although nitrous oxide can be produced by abiotic reactions in these systems, biological N2O production resulting from the imbalance of nitrous oxide production and reduction by microbial populations is the dominant cause. The microbial populations responsible for the imbalance have not been clearly identified, yet they are likely responsible for strong seasonal nitrous oxide patterns. Here, we examined the seasonal nitrous oxide concentration pattern in Avedøre WWTP alongside abiotic parameters, the microbial community composition based on 16S rRNA gene sequencing and already available metagenome-assembled genomes (MAGs). We found that the WWTP parameters could not explain the observed pattern. While no distinct community changes between periods of high and low dissolved nitrous oxide concentrations were determined, we found 26 and 28 species with positive and negative correlations to the seasonal N2O concentrations, respectively. MAGs were identified for 124 species (approximately 31% mean relative abundance of the community), and analysis of their genomic nitrogen transformation potential could explain this correlation for four of the negatively correlated species. Other abundant species were also analysed for their nitrogen transformation potential. Interestingly, only one full-denitrifier (Candidatus Dechloromonas phosphorivorans) was identified. 59 species had a nosZ gene predicted, with the majority identified as a clade II nosZ gene, mainly from the phylum Bacteroidota. A correlation of MAG-derived functional guilds with the N2O concentration pattern showed that there was a small but significant negative correlation with nitrite oxidizing bacteria and species with a nosZ gene (N2O reducers (DEN)). More research is required, specifically long-term activity measurements in relation to the N2O concentration to increase the resolution of these findings.


Assuntos
Gases de Efeito Estufa , Purificação da Água , Desnitrificação , Gases de Efeito Estufa/análise , Metagenoma , Nitrogênio/análise , Óxido Nitroso/análise , RNA Ribossômico 16S/genética , Estações do Ano
2.
Water Res ; 204: 117554, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500179

RESUMO

To reduce greenhouse gas emissions and promote resource recovery, many wastewater treatment operators are retrofitting existing plants to implement new technologies for energy, nutrient and carbon recovery. In literature, there is a lack of studies that can unfold the potential environmental and economic impacts of the transition that wastewater utilities are undertaking to transform their treatment plants to water resource recovery facilities (WRRFs). When existing, literature studies are mostly based on simulations rather than real plant data and pilot-scale results. This study combines life cycle assessment and economic evaluations to quantify the environmental and economic impacts of retrofitting an existing wastewater treatment plant (WWTP), which already implements energy recovery, into a full-scale WRRF with a series of novel technologies, the majority of which are already implemented full-scale or tested through pilot-scales. We evaluate five technology alternatives against the current performance of the WWTP: real-time N2O control, biological biogas upgrading coupled with power-to-hydrogen, phosphorus recovery, pre-filtration carbon harvest and enhanced nitrogen removal. Our results show that real-time N2O control, biological biogas upgrading and pre-filtration lead to a decrease in climate change and fossil resource depletion impacts. The implementation of the real-time measurement and control of N2O achieved the highest reduction in direct CO2-eq emissions (-35%), with no significant impacts in other environmental categories. Biological biogas upgrading contributed to counterbalancing direct and indirect climate change impacts by substituting natural gas consumption and production. Pre-filtration increased climate change reduction by 13%, while it increased impacts in other categories. Enhanced sidestream nitrogen removal increased climate change impacts by 12%, but decreased marine eutrophication impacts by 14%. The reserve base resource depletion impacts, however, were the highest in the plant configurations implementing biological biogas upgrading coupled with power-to-hydrogen. Environmental improvements generated economic costs for all alternatives except for real-time N2O control. The results expose possible environmental and economic trade-offs and hotspots of the journey that large wastewater treatment plants will undertake in transitioning into resource recovery facilities in the coming years.


Assuntos
Eliminação de Resíduos Líquidos , Purificação da Água , Biocombustíveis , Águas Residuárias , Recursos Hídricos
3.
Environ Sci Technol ; 53(21): 12485-12494, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31593443

RESUMO

This work aims to obtain full-scale N2O emission characteristics translatable into viable N2O control strategies and conduct full-scale testing of the proposed N2O control concepts. Data of a long-term monitoring campaign was first used to quantify full-scale N2O emission and probe into the seasonal pattern. Then trends between N2O production/emission and process variables/conditions during typical operating cycles were revealed to explore the dynamic N2O emission behavior. A multivariate statistical analysis was performed to find the dependency of N2O emission on relevant process variables. The results show for the first time that relatively low/high N2O emission took place in seasons with a decreasing/increasing trend of water temperature, respectively. Aerobic phase contributed to N2O production/emission probably mainly through the hydroxylamine pathway. Comparatively, heterotrophic bacteria had a dual role in the anoxic phase and could be responsible for both net N2O production and consumption. Incomplete denitrification might contribute mainly to the N2O production/emission in the anoxic phase and the accumulation of N2O to be significantly emitted in the following cycle due to the competition between different denitrification steps for electron donors. Therefore, properly extending the length of anoxic phase could serve as a potential control means to regulate N2O accumulation in the anoxic phase. The full-scale testing not only verified the efficacy of reduced dissolved oxygen set-point in reducing N2O emission by 60%, but also confirmed the proposed concepts of control over the aerobic and anoxic phases collectively.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Desnitrificação , Óxido Nitroso
4.
Water Sci Technol ; 79(7): 1397-1405, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31123239

RESUMO

The Marselisborg WWTP (Aarhus, Denmark) fed the mainstream nitrification/denitrification tanks with excess sludge from a sidestream DEMON tank for more than three years to investigate if anammox can supplement conventional nitrification/denitrification in a mainstream of a temperate region. To evaluate this long-term attempt, anammox and also denitrification rates were measured in activated sludge from the main- and sidestream at 10, 20 and 30 °C using 15N-labelling (stable isotope) experiments. The results show that anammox contributes by approximately 1% of the total nitrogen removal in the mainstream tanks and that anammox conversion rates there are approximately 800-900 times lower than in the DEMON. A distinct temperature dependence of both anammox and denitrification rates was also confirmed, however, results from different temperatures did not significantly alter relative shares, e.g. anammox rates in activated sludge from the nitrification/denitrification tanks are also negligible at 30 °C. This indicates that the anammox bacteria abundance in the nitrification/denitrification tanks is too low to play an important role and that an adaptation to lower temperatures had not occurred. Additional in situ measurements in the nitrification/denitrification tanks further revealed that full nitrification dominates over partial nitritation. Dominant nitritation-anammox is therefore excluded per se and also nitrite shunt activities are not particularly supported.


Assuntos
Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Biodegradação Ambiental , Desnitrificação , Dinamarca , Nitrificação/fisiologia , Nitrogênio , Oxirredução
5.
ACS Sens ; 2(5): 695-702, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28723161

RESUMO

A current challenge for development of amperometric sensors for the greenhouse gas nitrous oxide (N2O) is their sensitivity toward dioxygen and trace water. The need for aqueous dioxygen scavengers in front of the sensor implies a background signal from penetrating water vapor. In this paper, we introduce substituted phosphines as dioxygen scavengers and demonstrate the application in a dioxygen-insensitive N2O sensor. Suitably substituted phosphines have been synthesized to achieve good solubility properties in the electrochemically inert solvent propylene carbonate. Several sensors with and without physical separation of the sensing and dioxygen scavenging compartments were made and compared to current commercial sensors. The use of phosphines soluble in organic solvents as dioxygen scavengers yielded a higher sensitivity, albeit with longer response time. Proof-of-concept N2O sensors without the physically separated dioxygen scavenger chamber showed a greatly enhanced sensitivity with a comparable response time, thus demonstrating the possibility for greatly simplified sensor construction.

6.
J Cardiovasc Pharmacol ; 51(2): 170-7, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18287885

RESUMO

An increased plasma level of the major high-density lipoprotein (HDL) component, apolipoprotein A-I (apoA-I) is the aim of several therapeutic strategies for combating atherosclerotic disease. HDL therapy by direct intravenous administration of apoA-I is a plausible way; however, a fast renal filtration is a major obstacle for this approach. Using protein engineering technology, we have fused apoA-I to the trimerization domain of human tetranectin and thus constructed a high-mass recombinant trimeric apoA-I variant. The recombinant fusion protein was stable and expressed well; upon purification and intravenous injection into mice, it exhibited prolonged plasma retention time compared to wild type apoA-I. Trimeric apoA-I was biologically active in terms of promoting cholesterol efflux, stimulation of lecithin cholesterol acyltransferase-mediated cholesterol esterification, and reducing progression of atherosclerosis in cholesterol-fed low-density lipoprotein receptor-deficient mice. Direct administration of recombinant high-mass apoA-I analogues with retarded clearance is therefore a potential novel therapeutic approach for atherosclerotic plaque stabilization.


Assuntos
Apolipoproteína A-I/sangue , Aterosclerose/metabolismo , Animais , Apolipoproteína A-I/farmacologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Linhagem Celular , Colesterol/metabolismo , Relação Dose-Resposta a Droga , Humanos , Rim/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polímeros , Receptores de LDL/genética , Proteínas Recombinantes de Fusão/farmacologia , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...