Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7374, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37164993

RESUMO

The Coronavirus Disease 2019 (COVID-19) pandemic has been accompanied by increased prenatal maternal distress (PMD). PMD is associated with adverse pregnancy outcomes which may be mediated by the placenta. However, the potential impact of the pandemic on in vivo placental development remains unknown. To examine the impact of the pandemic and PMD on in vivo structural placental development using advanced magnetic resonance imaging (MRI), acquired anatomic images of the placenta from 63 pregnant women without known COVID-19 exposure during the pandemic and 165 pre-pandemic controls. Measures of placental morphometry and texture were extracted. PMD was determined from validated questionnaires. Generalized estimating equations were utilized to compare differences in PMD placental features between COVID-era and pre-pandemic cohorts. Maternal stress and depression scores were significantly higher in the pandemic cohort. Placental volume, thickness, gray level kurtosis, skewness and run length non-uniformity were increased in the pandemic cohort, while placental elongation, mean gray level and long run emphasis were decreased. PMD was a mediator of the association between pandemic status and placental features. Altered in vivo placental structure during the pandemic suggests an underappreciated link between disturbances in maternal environment and perturbed placental development. The long-term impact on offspring is currently under investigation.


Assuntos
COVID-19 , Complicações do Trabalho de Parto , Complicações na Gravidez , Gravidez , Feminino , Humanos , Placenta/patologia , Pandemias , COVID-19/epidemiologia , COVID-19/patologia , Gestantes , Complicações na Gravidez/patologia
2.
Commun Med (Lond) ; 2: 47, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647608

RESUMO

Background: Elevated maternal psychological distress during pregnancy is linked to adverse outcomes in offspring. The potential effects of intensified levels of maternal distress during the COVID-19 pandemic on the developing fetal brain are currently unknown. Methods: We prospectively enrolled 202 pregnant women: 65 without known COVID-19 exposures during the pandemic who underwent 92 fetal MRI scans, and 137 pre-pandemic controls who had 182 MRI scans. Multi-plane, multi-phase single shot fast spin echo T2-weighted images were acquired on a GE 1.5 T MRI Scanner. Volumes of six brain tissue types were calculated. Cortical folding measures, including brain surface area, local gyrification index, and sulcal depth were determined. At each MRI scan, maternal distress was assessed using validated stress, anxiety, and depression scales. Generalized estimating equations were utilized to compare maternal distress measures, brain volume and cortical folding differences between pandemic and pre-pandemic cohorts. Results: Stress and depression scores are significantly higher in the pandemic cohort, compared to the pre-pandemic cohort. Fetal white matter, hippocampal, and cerebellar volumes are decreased in the pandemic cohort. Cortical surface area and local gyrification index are also decreased in all four lobes, while sulcal depth is lower in the frontal, parietal, and occipital lobes in the pandemic cohort, indicating delayed brain gyrification. Conclusions: We report impaired fetal brain growth and delayed cerebral cortical gyrification in COVID-19 pandemic era pregnancies, in the setting of heightened maternal psychological distress. The potential long-term neurodevelopmental consequences of altered fetal brain development in COVID-era pregnancies merit further study.

3.
J Perinatol ; 42(7): 860-865, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35194161

RESUMO

OBJECTIVE: The aim of this study was to determine in utero fetal-placental growth patterns using in vivo three-dimensional (3D) quantitative magnetic resonance imaging (qMRI). STUDY DESIGN: Healthy women with singleton pregnancies underwent fetal MRI to measure fetal body, placenta, and amniotic space volumes. The fetal-placental ratio (FPR) was derived using 3D fetal body and placental volumes (PV). Descriptive statistics were used to describe the association of each measurement with increasing gestational age (GA) at MRI. RESULTS: Fifty-eight (58) women underwent fetal MRI between 16 and 38 completed weeks gestation (mean = 28.12 ± 6.33). PV and FPR varied linearly with GA at MRI (rPV,GA = 0.83, rFPR,GA = 0.89, p value < 0.001). Fetal volume varied non-linearly with GA (p value < 0.01). CONCLUSIONS: We describe in-utero growth trajectories of fetal-placental volumes in healthy pregnancies using qMRI. Understanding healthy in utero development can establish normative benchmarks where departures from normal may identify early in utero placental failure prior to the onset of fetal harm.


Assuntos
Imageamento por Ressonância Magnética , Placenta , Feminino , Desenvolvimento Fetal , Feto/diagnóstico por imagem , Idade Gestacional , Humanos , Imageamento por Ressonância Magnética/métodos , Placenta/diagnóstico por imagem , Placenta/patologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...