Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Eur Neuropsychopharmacol ; 28(10): 1151-1160, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30077433

RESUMO

We have recently shown that the emergence and severity of seasonal affective disorder (SAD) symptoms in the winter is associated with an increase in cerebral serotonin (5-HT) transporter (SERT) binding. Intriguingly, we also found that individuals resilient to SAD downregulate their cerebral SERT binding in the winter. In the present paper, we provide an analysis of the SERT- and 5-HT dynamics as indexed by 5-HT4 receptor (5-HT4R) binding related to successful stress coping. We included 46 11C-DASB positron emission tomography (PET) scans (N = 23, 13 women, age: 26 ± 6 years) and 14 11C-SB207145 PET scans (7 participants, 3 women, age: 25 ± 3 years) from 23 SAD-resilient Danes. Data was collected longitudinally in summer and winter. We found that compared to the summer, raphe nuclei and global brain SERT binding decreased significantly in the winter (praphe = 0.003 and pglobal = 0.003) and the two measures were positively correlated across seasons (summer: R2 = 0.33, p = .004, winter: R2 = 0.24, p = .018). A voxel-based analysis revealed prominent changes in SERT in clusters covering both angular gyri (0.0005 < pcorrected < 0.0016), prefrontal cortices (0.00087 < pcorrected < 0.0039) and the posterior temporal and adjacent occipital cortices (0.0001 < pcorrected < 0.0066). We did not observe changes in 5-HT4R binding, suggesting that 5-HT levels remained stable across seasons. We conclude that resilience to SAD is associated with a global downregulation of SERT levels in winter which serves to keep 5-HT levels across seasons.


Assuntos
Encéfalo/metabolismo , Resiliência Psicológica , Transtorno Afetivo Sazonal/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Benzilaminas , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Regulação para Baixo , Feminino , Humanos , Estudos Longitudinais , Masculino , Piperidinas , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Receptores 5-HT4 de Serotonina/metabolismo , Transtorno Afetivo Sazonal/diagnóstico por imagem , Transtorno Afetivo Sazonal/genética , Estações do Ano , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Fatores Sexuais
2.
Brain ; 139(Pt 5): 1605-14, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26994750

RESUMO

Cross-sectional neuroimaging studies in non-depressed individuals have demonstrated an inverse relationship between daylight minutes and cerebral serotonin transporter; this relationship is modified by serotonin-transporter-linked polymorphic region short allele carrier status. We here present data from the first longitudinal investigation of seasonal serotonin transporter fluctuations in both patients with seasonal affective disorder and in healthy individuals. Eighty (11)C-DASB positron emission tomography scans were conducted to quantify cerebral serotonin transporter binding; 23 healthy controls with low seasonality scores and 17 patients diagnosed with seasonal affective disorder were scanned in both summer and winter to investigate differences in cerebral serotonin transporter binding across groups and across seasons. The two groups had similar cerebral serotonin transporter binding in the summer but in their symptomatic phase during winter, patients with seasonal affective disorder had higher serotonin transporter than the healthy control subjects (P = 0.01). Compared to the healthy controls, patients with seasonal affective disorder changed their serotonin transporter significantly less between summer and winter (P < 0.001). Further, the change in serotonin transporter was sex- (P = 0.02) and genotype- (P = 0.04) dependent. In the patients with seasonal affective disorder, the seasonal change in serotonin transporter binding was positively associated with change in depressive symptom severity, as indexed by Hamilton Rating Scale for Depression - Seasonal Affective Disorder version scores (P = 0.01). Our findings suggest that the development of depressive symptoms in winter is associated with a failure to downregulate serotonin transporter levels appropriately during exposure to the environmental stress of winter, especially in individuals with high predisposition to affective disorders.media-1vid110.1093/brain/aww043_video_abstractaww043_video_abstract.


Assuntos
Transtorno Afetivo Sazonal/diagnóstico , Transtorno Afetivo Sazonal/metabolismo , Estações do Ano , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Adulto , Benzilaminas/metabolismo , Radioisótopos de Carbono/metabolismo , Estudos de Casos e Controles , Estradiol/sangue , Feminino , Humanos , Estudos Longitudinais , Masculino , Neuroimagem , Tomografia por Emissão de Pósitrons , Progesterona , Escalas de Graduação Psiquiátrica , Ensaio Radioligante , Transtorno Afetivo Sazonal/diagnóstico por imagem , Triptofano/sangue , Adulto Jovem
3.
J Nucl Med ; 56(1): 88-92, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25525183

RESUMO

UNLABELLED: Experience regarding O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET in children and adolescents with brain tumors is limited. METHODS: Sixty-nine (18)F-FET PET scans of 48 children and adolescents (median age, 13 y; range, 1-18 y) were analyzed retrospectively. Twenty-six scans to assess newly diagnosed cerebral lesions, 24 scans for diagnosing tumor progression or recurrence, 8 scans for monitoring of chemotherapy effects, and 11 scans for the detection of residual tumor after resection were obtained. Maximum and mean tumor-to-brain ratios (TBRs) were determined at 20-40 min after injection, and time-activity curves of (18)F-FET uptake were assigned to 3 different patterns: constant increase; peak at greater than 20-40 min after injection, followed by a plateau; and early peak (≤ 20 min), followed by a constant descent. The diagnostic accuracy of (18)F-FET PET was assessed by receiver-operating-characteristic curve analyses using histology or clinical course as a reference. RESULTS: In patients with newly diagnosed cerebral lesions, the highest accuracy (77%) to detect neoplastic tissue (19/26 patients) was obtained when the maximum TBR was 1.7 or greater (area under the curve, 0.80 ± 0.09; sensitivity, 79%; specificity, 71%; positive predictive value, 88%; P = 0.02). For diagnosing tumor progression or recurrence, the highest accuracy (82%) was obtained when curve patterns 2 or 3 were present (area under the curve, 0.80 ± 0.11; sensitivity, 75%; specificity, 90%; positive predictive value, 90%; P = 0.02). During chemotherapy, a decrease of TBRs was associated with a stable clinical course, and in 2 patients PET detected residual tumor after presumably complete tumor resection. CONCLUSION: Our findings suggest that (18)F-FET PET can add valuable information for clinical decision making in pediatric brain tumor patients.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tirosina/análogos & derivados , Adolescente , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Neoplasia Residual , Recidiva , Sensibilidade e Especificidade
4.
Biol Psychiatry ; 76(4): 332-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24439303

RESUMO

BACKGROUND: Bright-light intervention is reported to successfully treat depression, in particular seasonal affective disorder, but the neural pathways and molecular mechanisms mediating its effects are unclear. An amygdala-prefrontal cortex corticolimbic circuit regulates responses to salient environmental stimuli (e.g., threat) and may underlie these effects. Serotonin signaling modulates this circuit and is implicated in the pathophysiology of seasonal and other affective disorders. METHODS: We evaluated the effects of a bright-light intervention protocol on threat-related corticolimbic reactivity and functional coupling, assessed with an emotional faces functional magnetic resonance imaging paradigm at preintervention and postintervention. In a double-blind study conducted in the winter, 30 healthy male subjects received bright-light intervention (dose range between participants: .1-11.0 kilolux) for 30 minutes daily over a period of 3 weeks. Additionally, we considered serotonin transporter-linked polymorphic region (5-HTTLPR) genotype status as a model for differences in serotonin signaling and moderator of intervention effects. RESULTS: Bright-light dose significantly negatively affected threat-related amygdala and prefrontal reactivity in a dose-dependent manner. Conversely, amygdala-prefrontal and intraprefrontal functional coupling increased significantly in a dose-dependent manner. Genotype status significantly moderated bright-light intervention effects on intraprefrontal functional coupling. CONCLUSIONS: This is the first study to evaluate the effects of clinically relevant bright-light intervention on threat-related brain function. We show that amygdala-prefrontal reactivity and communication are significantly affected by bright-light intervention, an effect partly moderated by genotype. These novel findings support that this threat-related corticolimbic circuit is sensitive to light intervention and may mediate the therapeutic effects of bright-light intervention.


Assuntos
Encéfalo/fisiologia , Expressão Facial , Fototerapia , Percepção Visual/fisiologia , Encéfalo/efeitos da radiação , Mapeamento Encefálico , Relação Dose-Resposta à Radiação , Método Duplo-Cego , Técnicas de Genotipagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Vias Neurais/efeitos da radiação , Testes Neuropsicológicos , Testes de Personalidade , Estimulação Luminosa , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Processamento de Sinais Assistido por Computador , Percepção Visual/efeitos da radiação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...