Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Food Chem ; 417: 135885, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36917909

RESUMO

Accidental milk cross-contamination is one of the most common causes for costly food recalls. Yet, quantifying trace-levels of allergen is time-consuming and current methods are not adapted for routine analyses making quality control for trace-level allergen content impractical. This perpetuates voluntary "may-contain" statements that are unhelpful for people suffering from food allergies. Here, we developed a rapid LC-MS method enabling milk allergen quantification by comparing all tryptic-peptides of major milk allergens. The bovine-specific αS-2 casein peptide and allergen-epitope NAVPITPTLNR provided excellent performance in sensitivity (LOD 1 mg.kg-1; LOQ 2 mg.kg-1) across various dairy products, good recovery rates in baked croissants (77% with a 10% inter-day RSD) and a linear range of 2-2,000 mg.kg-1. The method can be used for routine determination of trace-contamination with bovine milk allergen and the adulteration of high-value caprine dairy products with lower-value bovine milk products, protecting consumer trust and the growing population suffering from food allergies.


Assuntos
Hipersensibilidade Alimentar , Leite , Humanos , Animais , Leite/química , Alérgenos/química , Cabras , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Caseínas/análise
2.
Anal Chem ; 94(49): 17046-17054, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36445804

RESUMO

The current food safety testing system, based on laboratory-based quantification, is difficult to scale up in line with the growth in the export market and does not enable traceability through the nodes of the food supply system. Screening assays, for example, lateral flow assays (LFAs), can improve traceability but often lack the required reliability to guarantee compliance. Here, we present an alternative pipeline for secure on-site compliance testing, using allergens as a case study. The pipeline features smartphone-driven LFA quantification and an liquid chromatography-mass spectrometry (LC-MS) method enabling direct quantification of the allergens contained in the LFA. The system enables swift and objective screening and provides a control measure to verify LFA assay reliability. For the smartphone assay, 8-bit RGB and grayscale colorimetric channels were compared with 16-bit raw intensity values. The latter outperformed RGB and grayscale channels in sensitivity, repeatability, and precision, while ratiometric ambient light correction resulted in excellent robustness for light-intensity variation. Calibration curves for peanut determination using two commercial LFAs featured excellent analytical parameters (R2 = 0.97-0.99; RSD 7-1%; LOD 3-7 ppm). Gluten determination with a third commercial LFA was equally established. A prediction error of 13 ± 11% was achieved for the best performing assay. Good performance-calibration curves (R2 = 0.93-0.99) and CVs (<15%)- were observed for the analyte quantification from the LFA by LC-MS. The LOD for the LC-MS assay was 0.5 ppm, well below the LODs reported for the LFAs. This method creates a digital, fast, and secure food safety compliance testing paradigm that can benefit the industry and consumer alike.


Assuntos
Hipersensibilidade Alimentar , Humanos , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Alérgenos/análise
3.
Curr Opin Struct Biol ; 75: 102424, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35870398

RESUMO

Protein biosensors play increasingly important roles in cell and neurobiology and have the potential to revolutionise the way clinical and industrial analytics are performed. The gradual transition from multicomponent biosensors to fully integrated single chain allosteric biosensors has brought the field closer to commercial applications. We evaluate various approaches for converting constitutively active protein reporter domains into analyte operated switches. We discuss the paucity of the natural receptors that undergo conformational changes sufficiently large to control the activity of allosteric reporter domains. This problem can be overcome by constructing artificial versions of such receptors. The design path to such receptors involves the construction of Chemically Induced Dimerisation systems (CIDs) that can be configured to operate single and two-component biosensors.


Assuntos
Técnicas Biossensoriais , Engenharia de Proteínas , Domínios Proteicos , Proteínas
4.
Food Chem ; 383: 132592, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35413757

RESUMO

This study improves LC-MS-based trace level peanut allergen quantification in processed food by refining method robustness, total analysis time and method sensitivity. Extraction buffer (six compared) and peptide choice were optimised and found to profoundly affect method robustness. A rapid extraction and in-solution digestion method was developed omitting subsequent reduction, alkylation and sample clean-up steps effectively reducing total analysis time from the previously reported ∼5.5-20 h to ∼2.5 h. For the three best performing peptides, accurate quantification (CVs < 15%) with matrix-matched calibration curves (R2 = 0.99-0.97) was achieved for peanut muffin and ice-cream with excellent linearity (0.25-1000 mg kg-1). The best performing peptide enabled excellent recovery rates in ice-cream (106.0 ± 15.1%) and peanut muffin (72.7 ± 13.4%). Sensitivity (LOD = 0.25-0.5 mg kg-1; LOQ = 0.5-1.0 mg kg-1) was 2- to 20-fold improved compared to previous methods depending on the peptide. These methodological improvements contribute to robust peanut detection in food and can be translated to additional food-borne allergens.


Assuntos
Arachis , Hipersensibilidade Alimentar , Alérgenos/análise , Análise de Alimentos/métodos , Peptídeos , Proteínas de Plantas/análise , Proteômica/métodos
5.
Compr Rev Food Sci Food Saf ; 21(3): 2391-2432, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35279935

RESUMO

Meat quality can be affected by stress, exhaustion, feed composition, and other physical and environmental conditions. These stressors can alter the pH in postmortem muscle, leading to high pH and low-quality dark cutting (DC) beef, resulting in considerable economic loss. Moreover, the dark cutting prediction may equally provide a measure for animal welfare since it is directly related to animal stress. There are two needs to advance on-site detection of dark cutters: (1) a clear indication that biomarker (signature compounds) levels in cattle correlate with stress and DC outcome; and (2) measuring these biomarkers rapidly and accurately on-farm or the abattoir, depending on the objectives. This critical review assesses which small molecules and proteins have been identified as potential biomarkers of stress and dark cutting in cattle. We discuss the potential of promising small molecule biomarkers, including catecholamine/cortisol metabolites, lactate, succinate, inosine, glucose, and ß-hydroxybutyrate, and we identify a clear research gap for proteomic biomarker discovery in live cattle. We also explore the potential of chemical-sensing and biosensing technologies, including direct electrochemical detection improved through nanotechnology (e.g., carbon and gold nanostructures), surface-enhanced Raman spectroscopy in combination with chemometrics, and commercial hand-held devices for small molecule detection. No current strategy exists to rapidly detect predictive meat quality biomarkers due to the need to further validate biomarkers and the fact that different biosensor types are needed to optimally detect different molecules. Nonetheless, several biomarker/biosensor combinations reported herein show excellent potential to enable the measurement of DC potential in live cattle.


Assuntos
Técnicas Biossensoriais , Proteômica , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Bovinos , Concentração de Íons de Hidrogênio , Músculo Esquelético/química
6.
Open Biol ; 11(9): 210158, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582710

RESUMO

In insects, many critical olfactory behaviours are mediated by the large odorant receptor (Or) gene family, which determines the response properties of different classes of olfactory receptor neurons (ORNs). While ORN responses are generally conserved within and between Drosophila species, variant alleles of the D. melanogaster Or22 locus have previously been shown to alter the response profile of an ORN class called ab3A. These alleles show potential clinal variation, suggesting that selection is acting at this locus. Here, we investigated if the changes seen in ab3A responses lead to changes in olfactory-related behaviours. We show that variation at the Or22 locus and in the ab3A neurons are not fully compensated for by other ORNs and lead to overall changes in antennal odorant detection. We further show that this correlates with differences in odorant preference behaviour and with differences in oviposition site preference, with flies that have the chimaeric short allele strongly preferring to oviposit on banana. These findings indicate that variation at the Or22 locus leads to changes in olfactory-driven behaviours, and add support to the idea that the ab3A neurons are of especial importance to the ecology of Drosophila flies.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Odorantes/análise , Neurônios Receptores Olfatórios/fisiologia , Oviposição , Receptores Odorantes/metabolismo , Animais , Proteínas de Drosophila/genética , Feminino , Masculino , Neurônios Receptores Olfatórios/citologia , Receptores Odorantes/genética
7.
Sensors (Basel) ; 21(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477883

RESUMO

The demand for point-of-need (PON) diagnostics for clinical and other applications is continuing to grow. Much of this demand is currently serviced by biosensors, which combine a bioanalytical sensing element with a transducing device that reports results to the user. Ideally, such devices are easy to use and do not require special skills of the end user. Application-dependent, PON devices may need to be capable of measuring low levels of analytes very rapidly, and it is often helpful if they are also portable. To date, only two transduction modalities, colorimetric lateral flow immunoassays (LFIs) and electrochemical assays, fully meet these requirements and have been widely adopted at the point-of-need. These modalities are either non-quantitative (LFIs) or highly analyte-specific (electrochemical glucose meters), therefore requiring considerable modification if they are to be co-opted for measuring other biomarkers. Förster Resonance Energy Transfer (RET)-based biosensors incorporate a quantitative and highly versatile transduction modality that has been extensively used in biomedical research laboratories. RET-biosensors have not yet been applied at the point-of-need despite its advantages over other established techniques. In this review, we explore and discuss recent developments in the translation of RET-biosensors for PON diagnoses, including their potential benefits and drawbacks.


Assuntos
Técnicas Biossensoriais , Sistemas Automatizados de Assistência Junto ao Leito , Transferência Ressonante de Energia de Fluorescência , Imunoensaio
8.
Biosens Bioelectron ; 158: 112162, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32275213

RESUMO

Bioluminescence resonance energy transfer (BRET) is a sensitive optical detection method that can monitor changes in the relative orientation and the physical proximity of molecules in real-time. Since the light is generated internally by a bioluminescent protein, BRET does not rely on an external light source. The use of BRET simultaneously simplifies the hardware required for sensing and offers improved detection limits and sensitivity for applications targeting point-of-care bio-sensing. In this paper, we report a compact micro reactor integrating a thermostat with a re-useable glass-chip comprising a chaotic mixer, an incubation channel and optical detection chamber. The device was optimised to detect thrombin activities in serum, achieving a thrombin detection limit of 38 µU/µl in 10% (v/v) human serum in a 5 min assay time. This is a 90% assay time reduction, compared with previous BRET-based work or other technologies. It matches sensitivity levels achieved when the assay is deployed on a commercially available plate-reader. The device can be used continuously with low concentrations (3.4 µM) of luciferase substrate. The low cost associated with this approach, low interference from human serum and other proteases and good reproducibility (CV = 0.2-3.6%), establish new performance standards for point-of-care diagnostics with samples of human serum. Importantly, measuring protease activity levels, rather than concentrations, is the most informative approach for clinical diagnostics. Of the recently reported ultra-sensitive thrombin sensing techniques, this is the only one to measure thrombin activity in serum dilutions, rather than simply quantifying thrombin concentrations.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Biomarcadores/sangue , Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Trombina , Desenho de Equipamento , Genes Reporter , Humanos , Proteínas Luminescentes , Testes Imediatos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Trombina/metabolismo
9.
Micromachines (Basel) ; 11(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192094

RESUMO

The investigation of clandestine laboratories poses serious hazards for first responders, emergency services, investigators and the surrounding public due to the risk of exposure to volatile organic compounds (VOCs) used in the manufacture of illicit substances. A novel gas sampling interface using open microfluidic channels that enables the extraction of VOCs out of the gas phase and into a liquid, where it can be analysed by conventional detection systems, has recently been developed. This paper investigates the efficiency and effectiveness of such a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances (ATS) and their precursors from the vapour phase. The GTL interface was evaluated across a range of different ATS and their precursors (methamphetamine, dimethylamphetamine, N-formylmethamphetamine, benzaldehyde, phenyl-2-propanone, ephedrine and pseudoephedrine) at concentrations ranging between 10 and 32 mg m-3. These gas samples were produced by a gas generation system directly in Tedlar® bags and gas canisters for controlled volume sampling. When using gas sampled from Tedlar® bags, four of the seven compounds were able to be extracted by the GTL interface, with the majority of the VOCs having extraction yields between 0.005% and 4.5%, in line with the results from an initial study. When samples were taken from gas canisters, only benzaldehyde was able to be detected, with extraction efficiencies between 0.2% and 0.4%. A custom-built mount for the GTL interface helped to automate the extraction process, with the aim of increasing extraction efficiency or reducing variability. However, the extraction efficiency did not improve when using this accessory, but the procedure did become more efficient. The results from the study indicated that the GTL interface could be employed for the collection of gaseous ATS and incorporated into mobile detection systems for onsite collection and analysis of volatile compounds related to ATS manufacture.

10.
Insect Biochem Mol Biol ; 118: 103313, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31911087

RESUMO

Sensory neuron membrane proteins (SNMPs) play a critical role in the insect olfactory system but there is a deficit of functional studies beyond Drosophila. Here, we use a combination of available genome sequences, manual curation, genome and transcriptome data, phylogenetics, expression profiling and gene knockdown to investigate SNMP superfamily in various insect species with a focus on Lepidoptera. We curated 81 genes from 36 insect species and identified a novel lepidopteran SNMP gene family, SNMP3. Phylogenetic analysis shows that lepidopteran SNMP3, but not the previously annotated lepidopteran SNMP2, is the true homologue of the dipteran SNMP2. Digital expression, microarray and qPCR analyses show that the lepidopteran SNMP1 is specifically expressed in adult antennae. SNMP2 is widely expressed in multiple tissues while SNMP3 is specifically expressed in the larval midgut. Microarray analysis suggest SNMP3 may be involved in the silkworm immunity response to virus and bacterial infections. We functionally characterized SNMP1 in the silkworm using RNA interference (RNAi) and behavioral assays. Our results suggested that Bombyx mori SNMP1 is a functional orthologue of the Drosophila melanogaster SNMP1 and plays a critical role in pheromone detection. Split-ubiquitin yeast hybridization study shows that BmorSNMP1 has a protein-protein interaction with the pheromone receptor (BmorOR1), and the co-receptor (BmorOrco). Concluding, we propose a novel molecular model in which BmorOrco, BmorSNMP1 and BmorOR1 form a heteromer in the detection of the silkworm sex pheromone bombykol.


Assuntos
Borboletas/genética , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Mariposas/genética , Proteínas do Tecido Nervoso/genética , Animais , Borboletas/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Membrana/metabolismo , Mariposas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Filogenia , Células Receptoras Sensoriais/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie
11.
Physiother Can ; 71(1): 34-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787497

RESUMO

Purpose: The authors determined the reliability and validity of the Four-Point Pusher Score (4PPS) among stroke survivors. Method: Stroke survivors were invited to participate within 48 hours of admission to a stroke rehabilitation unit in a tertiary hospital. Intrarater reliability was determined by examining scores assigned to the same patient by the same physiotherapist. Interrater reliability was determined by examining scores assigned to the same patient by two other physiotherapists. Validity was determined by examining associations with the Burke Lateropulsion Scale (BLS), Scale for Contraversive Pushing (SCP), and functional scales. Results: A total of 85 participants who were a median of 13 (interquartile range 9-21) days post-stroke completed this study. The weighted κ statistic for 4PPS intra- and interrater reliability was 0.97 (p < 0.001). Scores on the 4PPS were very strongly associated with scores on the BLS (r s = 0.95) and the SCP (r s = 0.86). Strong associations were evident between the 4PPS and the Berg Balance Scale (r s = -0.77), Chedoke-McMaster Stroke Assessment postural control scale (r s = -0.76), and FIM Motor sub-scale (r s = -0.64; all ps < 0.001). Conclusion: The 4PPS is a reliable and valid scale to assess lateropulsion and pusher behaviour in stroke survivors in an in-patient rehabilitation setting.


Objectif : déterminer la fiabilité et la validité du score du pousseur en quatre points (SP4P) chez les survivants d'un accident vasculaire cérébral (AVC). Méthodologie : des survivants d'un AVC hospitalisés dans l'unité d'un hôpital de soins tertiaires depuis moins de 48 heures ont été invités à participer à une réadaptation après un AVC. Les chercheurs ont déterminé la fiabilité intraévaluateur en examinant les scores attribués par un même physiothérapeute au même patient, et la fiabilité interévaluateur en examinant les scores attribués par deux autres physiothérapeutes au même patient. Ils ont établi la validité en examinant les associations avec l'échelle de latéropulsion de Burke (ÉLB), l'échelle de poussée contralésionnelle (ÉPC) et les échelles fonctionnelles. Résultats : au total, 85 participants qui avaient subi leur AVC une médiane de 13 jours auparavant (plage interquartile de 9 à 21 jours) ont terminé l'étude. Le test de concordance pondéré de kappa pour déterminer la fiabilité intraévaluateur et interévaluateur des SP4P s'élevait à 0,97 (p < 0,001). Les SP4P s'associaient très fortement à ceux de l'ÉLB (r s = 0,95) et de l'ÉPC (r s = 0,86). Des associations solides étaient évidentes entre les SP4P et l'échelle d'évaluation de l'équilibre de Berg (r s = ­0,77), l'échelle de contrôle postural de Chedoke-McMaster (r s = ­0,76) et le sous-score moteur de mesure de l'autonomie fonctionnelle (r s = ­0,64; p < 0,001 dans tous les cas). Conclusion : le SP4P est fiable et valide pour évaluer le comportement de la latéropulsion et du pousseur des survivants d'un AVC dans un contexte de réadaptation hospitalière.

12.
Mol Biol Evol ; 36(5): 919-929, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768139

RESUMO

Insect odorant receptor (Or) genes determine the responses of sensory neurons that mediate critical behaviors. The Drosophila melanogaster Or22 locus represents an interesting example of molecular evolution, with high levels of sequence divergence and copy number variation between D. melanogaster and other Drosophila species, and a corresponding high level of variability in the responses of the neuron it controls, ab3A. However, the link between Or22 molecular and functional diversity has not been established. Here, we show that several naturally occurring Or22 variants generate major shifts in neuronal response properties. We determine the molecular changes that underpin these response shifts, one of which represents a chimeric gene variant previously suggested to be under natural selection. In addition, we show that several alternative molecular genetic mechanisms have evolved for ensuring that where there is more than one gene copy at this locus, only one functional receptor is generated. Our data thus provide a causal link between the striking levels of phenotypic neuronal response variation found in natural populations of D. melanogaster and genetic variation at the Or22 locus. Since neuronal responses govern animal behavior, we predict that Or22 may be a key player in underlying one or more olfactory-driven behaviors of significant adaptive importance.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/genética , Animais , Feminino , Variação Genética , Proteínas de Insetos/genética , Masculino , Fenótipo
13.
Anal Bioanal Chem ; 410(29): 7739-7747, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30280229

RESUMO

The ability to detect and identify substances based on the volatile compounds (odors) they emit is relied upon heavily for numerous investigative purposes. Animals have an innate olfactory sensitivity and selectivity that out-performs current instrumentation. This has led to immense interest in their employment as chemical sensors for a range of applications, including forensic science, both as whole organisms and as sensing elements in biosensors. Using electrophysiological and calcium imaging assays, this research examined the response of Drosophila melanogaster olfactory receptors (ORs) to odor compounds significant in forensic science and assessed their potential utility as volatile compound sensors. This investigation illustrated the different sensitivities, selectivities, and sensing features of individual ORs and demonstrated that their employment for detection purposes is feasible. While further research expanding on this study will be required to demonstrate the performance characteristics that an OR-based detection system will ultimately possess, this research provides an encouraging first step towards the goal of utilizing isolated biological ORs as volatile compound sensors in forensic science.


Assuntos
Drosophila melanogaster , Ciências Forenses , Receptores Odorantes/química , Compostos Orgânicos Voláteis/química , Animais , Bioensaio , Clonagem Molecular , Fenômenos Eletrofisiológicos , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
14.
Insect Biochem Mol Biol ; 99: 37-53, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29800678

RESUMO

The functions of the Ionotropic Receptor (IR) family have been well studied in Drosophila melanogaster, but only limited information is available in Lepidoptera. Here, we conducted a large-scale genome-wide analysis of the IR gene repertoire in 13 moths and 16 butterflies. Combining a homology-based approach and manual efforts, totally 996 IR candidates are identified including 31 pseudogenes and 825 full-length sequences, representing the most current comprehensive annotation in lepidopteran species. The phylogeny, expression and sequence characteristics classify Lepidoptera IRs into three sub-families: antennal IRs (A-IRs), divergent IRs (D-IRs) and Lepidoptera-specific IRs (LS-IRs), which is distinct from the case of Drosophila IRs. In comparison to LS-IRs and D-IRs, A-IRs members share a higher degree of protein identity and are distinguished into 16 orthologous groups in the phylogeny, showing conservation of gene structure. Analysis of selective forces on 27 orthologous groups reveals that these lepidopteran IRs have evolved under strong purifying selection (dN/dS≪1). Most notably, lineage-specific gene duplications that contribute primarily to gene number variations across Lepidoptera not only exist in D-IRs, but are present in the two other sub-families including members of IR41a, 76b, 87a, 100a and 100b. Expression profiling analysis reveals that over 80% (21/26) of Helicoverpa armigera A-IRs are expressed more highly in antennae of adults or larvae than other tissues, consistent with its proposed function in olfaction. However, some are also detected in taste organs like proboscises and legs. These results suggest that some A-IRs in H. armigera likely bear a dual function with their involvement in olfaction and gustation. Results from mating experiments show that two HarmIRs (IR1.2 and IR75d) expression is significantly up-regulated in antennae of mated female moths. However, no expression difference is observed between unmated female and male adults, suggesting an association with female host-searching behaviors. Our current study has greatly extended the IR gene repertoire resource in Lepidoptera, and more importantly, identifies potential IR candidates for olfactory, gustatory and oviposition behaviors in the cotton bollworm.


Assuntos
Regulação da Expressão Gênica/fisiologia , Genoma de Inseto/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Insetos , Lepidópteros , Receptores Ionotrópicos de Glutamato , Animais , Drosophila melanogaster , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Lepidópteros/genética , Lepidópteros/metabolismo , Receptores Ionotrópicos de Glutamato/biossíntese , Receptores Ionotrópicos de Glutamato/genética
15.
Sci Rep ; 7(1): 11816, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947760

RESUMO

Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world's worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains ("C" and "R") that have different host plant ranges. To describe the evolutionary mechanisms that both enable the emergence of polyphagous herbivory and lead to the shift in the host preference, we analyzed whole genome sequences from laboratory and natural populations of both strains. We observed huge expansions of genes associated with chemosensation and detoxification compared with specialist Lepidoptera. These expansions are largely due to tandem duplication, a possible adaptation mechanism enabling polyphagy. Individuals from natural C and R populations show significant genomic differentiation. We found signatures of positive selection in genes involved in chemoreception, detoxification and digestion, and copy number variation in the two latter gene families, suggesting an adaptive role for structural variation.


Assuntos
Adaptação Fisiológica/genética , Genoma de Inseto , Herbivoria , Spodoptera/genética , Animais , Produtos Agrícolas , Larva/genética , Especificidade da Espécie
16.
Genome ; 60(12): 1037-1044, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28825966

RESUMO

Insects utilize sugars as their essential energy and nutrient sources; therefore, the sense of sugar detection plays a critical role in insect behaviours. Previously, using genomic and transcriptomic approaches, we identified eight putative sugar gustatory receptor (GR) genes from the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Here, we further validated these annotated sugar receptor genes (HarmGr4-HarmGr8 and HarmGr10-HarmGr12) and found HarmGr10 may be a pseudogene carrying a stop codon in the open reading frame. Sequence alignment revealed H. armigera sugar GR sequences are conserved at C-terminus and phylogenetic analysis showed that insect sugar GRs have evolved in a family-specific manner. Interestingly, all eight H. armigera sugar GRs are localized in a tandem array on the same scaffold of the genome. In silico gene expression and reverse transcription (RT)-PCR analysis showed that HarmGr10 is specifically expressed in male adult testes while HarmGr11 is specifically expressed in female adult ovaries, suggesting H. armigera sugar GRs may be involved in reproduction-related functions. This study improves our knowledge on insect sugar receptors and gustatory systems.


Assuntos
Proteínas de Insetos/genética , Lepidópteros/genética , Receptores de Superfície Celular/genética , Açúcares/metabolismo , Paladar , Animais , Sequência Conservada , Evolução Molecular , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Lepidópteros/classificação , Masculino , Ovário/metabolismo , Filogenia , Domínios Proteicos , Pseudogenes , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Testículo/metabolismo
17.
Sci Rep ; 6: 23666, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27032373

RESUMO

The Insect taste system plays a central role in feeding behaviours and co-evolution of insect-host interactions. Gustatory receptors form the interface between the insect taste system and the environment. From genome and transcriptome sequencing we identified 197 novel gustatory receptor (GR) genes from the polyphagous pest Helicoverpa armigera. These GRs include a significantly expanded bitter receptor family (180 GRs) that could be further divided into three categories based on polypeptide lengths, gene structure and amino acid sequence. Type 1 includes 29 bitter Gr genes that possess introns. Type 2 includes 13 long intronless bitter Gr genes, while Type 3 comprises 131 short intronless bitter Gr genes. Calcium imaging analysis demonstrated that three Type 3 GRs (HarmGR35, HarmGR50 and HarmGR195) can be activated by a crude extract of cotton leaves. HarmGR195, a GR specifically and selectively expressed in adult tarsi, showed a specific response to proline, an amino acid widely present in plant tissues. We hypothesise that the expansion in the H. armigera GR family may be functionally tied to its polyphagous behavior. Understanding the molecular basis of polyphagy may provide opportunities for the development of new environmentally friendly pest control strategies.


Assuntos
Genes de Insetos , Proteínas de Insetos/genética , Canais Iônicos de Abertura Ativada por Ligante/genética , Mariposas/genética , Aminoácidos , Animais , Bombyx/genética , Éxons/genética , Feminino , Perfilação da Expressão Gênica , Genoma , Herbivoria , Íntrons/genética , Larva , Masculino , Mariposas/classificação , Mariposas/fisiologia , Filogenia , Folhas de Planta , Receptores Acoplados a Proteínas G , Especificidade da Espécie , Transcriptoma
18.
BMC Genomics ; 16: 255, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25880816

RESUMO

BACKGROUND: Blowflies have relevance in areas of forensic science, agriculture, and medicine, primarily due to the ability of their larvae to develop on flesh. While it is widely accepted that blowflies rely heavily on olfaction for identifying and locating hosts, there is limited research regarding the underlying molecular mechanisms. Using next generation sequencing (Illumina), this research examined the antennal transcriptome of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) to identify members of the major chemosensory gene families necessary for olfaction. RESULTS: Representative proteins from all chemosensory gene families essential in insect olfaction were identified in the antennae of the blowfly C. stygia, including 50 odorant receptors, 22 ionotropic receptors, 21 gustatory receptors, 28 odorant binding proteins, 4 chemosensory proteins, and 3 sensory neuron membrane proteins. A total of 97 candidate cytochrome P450s and 39 esterases, some of which may act as odorant degrading enzymes, were also identified. Importantly, co-receptors necessary for the proper function of ligand-binding receptors were identified. Putative orthologues for the conserved antennal ionotropic receptors and candidate gustatory receptors for carbon dioxide detection were also amongst the identified proteins. CONCLUSIONS: This research provides a comprehensive novel resource that will be fundamental for future studies regarding blowfly olfaction. Such information presents potential benefits to the forensic, pest control, and medical areas, and could assist in the understanding of insecticide resistance and targeted control through cross-species comparisons.


Assuntos
Antenas de Artrópodes/metabolismo , Dípteros/genética , Proteínas de Insetos/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Dípteros/metabolismo , Drosophila/genética , Drosophila/metabolismo , Feminino , Genoma de Inseto , Masculino , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Receptores de Superfície Celular/química , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/genética , Receptores Odorantes/genética , Alinhamento de Sequência , Olfato/genética
19.
Naturwissenschaften ; 102(3-4): 11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724420

RESUMO

Carbon dioxide (CO2) is important in insect ecology, eliciting a range of behaviours across different species. Interestingly, the numbers of CO2 gustatory receptors (GRs) vary among insect species. In the model organism Drosophila melanogaster, two GRs (DmelGR21a and DmelGR63a) have been shown to detect CO2. In the butterfly, moth, beetle and mosquito species studied so far, three CO2 GR genes have been identified, while in tsetse flies, four CO2 GR genes have been identified. In other species including honeybees, pea aphids, ants, locusts and wasps, no CO2 GR genes have been identified from the genome. These genomic differences may suggest different mechanisms for CO2 detection exist in different insects but, with the exception of Drosophila and mosquitoes, limited attention has been paid to the CO2 GRs in insects. Here, we cloned three putative CO2 GR genes from the cotton bollworm Helicoverpa armigera and performed phylogenetic and expression analysis. All three H. armigera CO2 GRs (HarmGR1, HarmGR2 and HarmGR3) are specifically expressed in labial palps, the CO2-sensing tissue of this moth. HarmGR3 is significantly activated by NaHCO3 when expressed in insect Sf9 cells but HarmGR1 and HarmGR2 are not. This is the first report characterizing the function of lepidopteran CO2 receptors, which contributes to our general understanding of the molecular mechanisms of insect CO2 gustatory receptors.


Assuntos
Regulação da Expressão Gênica , Mariposas/genética , Receptores de Superfície Celular/genética , Animais , Perfilação da Expressão Gênica , Genoma de Inseto/genética , Mariposas/classificação , Filogenia , Células Sf9
20.
Artigo em Inglês | MEDLINE | ID: mdl-25460831

RESUMO

Moths have evolved a sensitive and sophisticated olfactory system to sense a variety of semiochemicals from the external environment. In chemosensory processes, the odorant binding protein (OBP) is an essential element for filtering, binding and transporting hydrophobic odorant molecules to the specific receptors. Here focusing on a major sub-class of lepidopteran OBPs, general-odorant binding proteins (GOBPs), we explored the relationship and functional difference between two GOBP members from a noctuid species Spodoptera litura. Using genomic DNA as the template, we demonstrated that SlitGOBP2 and three SlitPBPs are clustered on the same chromosome within a close proximity. qPCR results showed that two SlitGOBPs were primarily expressed in antennae at similar levels between females and males, but GOBP2 displayed much higher expression than GOBP1. Binding studies revealed that both SlitGOBP1 and 2 strongly bound C14-C16 alcohol-pheromone analogs with high affinities (Ki<1.0 µM). However, SlitGOBP2 also strongly bound most acetate- and aldehyde-sex pheromone components and analogs, while SlitGOBP1 could not. For tested plant odorants, SlitGOBP1 showed a relatively broad ligand-binding spectrum with moderate affinities, while SlitGOBP2 was tuned to some compounds with strong binding activities (Ki<5.0 µM). Finally, by molecular docking we explored the differences in protein structures and potential key residues in the binding pockets between the two SlitGOBPs. Taken together, our study strongly suggests that SlitGOBP2 and SlitPBPs evolved by gene duplication events, and two SlitGOBPs have functionally differentiated in odorant recognition.


Assuntos
Odorantes , Receptores Odorantes/metabolismo , Atrativos Sexuais/química , Sequência de Aminoácidos , Animais , Proteínas de Insetos/metabolismo , Plantas/química , Ligação Proteica , Spodoptera/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...