Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
PLoS One ; 11(8): e0160341, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27500639

RESUMO

Little is known about the humoral immune response against DNA prime-recombinant adenovirus 5 (rAd5) boost HIV vaccine among HIV-infected patients on long-term suppressive antiretroviral therapy (ART). Previous studies emphasized cellular immune responses; however, current research suggests both cellular and humoral responses are likely required for a successful therapeutic vaccine. Thus, we aimed to understand antibody response and function induced by vaccination of ART-treated HIV-1-infected patients with immune recovery. All subjects participated in EraMune 02, an open-label randomized clinical trial of ART intensification followed by a six plasmid DNA prime (envA, envB, envC, gagB, polB, nefB) and rAd5 boost HIV vaccine with matching inserts. Antibody binding levels were determined with a recently developed microarray approach. We also analyzed neutralization efficiency and antibody-dependent cellular cytotoxicity (ADCC). We found that the DNA prime-rAd5 boost vaccine induced a significant cross-clade HIV-specific antibody response, which correlated with antibody neutralization efficiency. However, despite the increase in antibody binding levels, the vaccine did not significantly stimulate neutralization or ADCC responses. This finding was also reflected by a lack of change in total CD4+ cell associated HIV DNA in those who received the vaccine. Our results have important implications for further therapeutic vaccine design and administration, especially in HIV-1 infected patients, as boosting of preexisting antibody responses are unlikely to lead to clearance of latent proviruses in the HIV reservoir.


Assuntos
Vacinas contra a AIDS/imunologia , Adenoviridae/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Imunização Secundária/métodos , Vacinas de DNA/imunologia , Vacinas contra a AIDS/administração & dosagem , Adenoviridae/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Vacinas de DNA/administração & dosagem
5.
Proc Natl Acad Sci U S A ; 109(50): 20373-8, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23185001

RESUMO

Melanoma patients experience inferior survival after biochemotherapy when their tumors contain numerous cells expressing the inducible isoform of NO synthase (iNOS) and elevated levels of nitrotyrosine, a product derived from NO. Although several lines of evidence suggest that NO promotes tumor growth and increases resistance to chemotherapy, it is unclear how it shapes these outcomes. Here we demonstrate that modulation of NO-mediated S-nitrosation of cellular proteins is strongly associated with the pattern of response to the anticancer agent cisplatin in human melanoma cells in vitro. Cells were shown to express iNOS constitutively, and to generate sustained nanomolar levels of NO intracellularly. Inhibition of NO synthesis or scavenging of NO enhanced cisplatin-induced apoptotic cell death. Additionally, pharmacologic agents disrupting S-nitrosation markedly increased cisplatin toxicity, whereas treatments favoring stabilization of S-nitrosothiols (SNOs) decreased its cytotoxic potency. Activity of the proapoptotic enzyme caspase-3 was higher in cells treated with a combination of cisplatin and chemicals that decreased NO/SNOs, whereas lower activity resulted from cisplatin combined with stabilization of SNOs. Constitutive protein S-nitrosation in cells was detected by analysis with biotin switch and reduction/chemiluminescence techniques. Moreover, intracellular NO concentration increased significantly in cells that survived cisplatin treatment, resulting in augmented S-nitrosation of caspase-3 and prolyl-hydroxylase-2, the enzyme responsible for targeting the prosurvival transcription factor hypoxia-inducible factor-1α for proteasomal degradation. Because activities of these enzymes are inhibited by S-nitrosation, our data thus indicate that modulation of intrinsic intracellular NO levels substantially affects cisplatin toxicity in melanoma cells. The underlying mechanisms may thus represent potential targets for adjuvant strategies to improve the efficacy of chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Óxido Nítrico/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Carcinógenos/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/patologia , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrosação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...