Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32338603

RESUMO

piRNAs play a critical role in the regulation of transposons and other germline genes. In Caenorhabditis elegans, regulation of piRNA target genes is mediated by the mutator complex, which synthesizes high levels of siRNAs through the activity of an RNA-dependent RNA polymerase. However, the steps between mRNA recognition by the piRNA pathway and siRNA amplification by the mutator complex are unknown. Here, we identify the Tudor domain protein, SIMR-1, as acting downstream of piRNA production and upstream of mutator complex-dependent siRNA biogenesis. Interestingly, SIMR-1 also localizes to distinct subcellular foci adjacent to P granules and Mutator foci, two phase-separated condensates that are the sites of piRNA-dependent mRNA recognition and mutator complex-dependent siRNA amplification, respectively. Thus, our data suggests a role for multiple perinuclear condensates in organizing the piRNA pathway and promoting mRNA regulation by the mutator complex.


In the biological world, a process known as RNA interference helps cells to switch genes on and off and to defend themselves against harmful genetic material. This mechanism works by deactivating RNA sequences, the molecular templates cells can use to create proteins. Overall, RNA interference relies on the cell creating small RNA molecules that can target and inhibit the harmful RNA sequences that need to be silenced. More precisely, in round worms such as Caenorhabditis elegans, RNA interference happens in two steps. First, primary small RNAs identify the target sequences, which are then combatted by newly synthetised, secondary small RNAs. A number of proteins are also involved in both steps of the process. RNA interference is particularly important to preserve fertility, guarding sex cells against 'rogue' segments of genetic information that could be passed on to the next generation. In future sex cells, the proteins involved in RNA interference cluster together, forming a structure called a germ granule. Yet, little is known about the roles and identity of these proteins. To fill this knowledge gap, Manage et al. focused on the second stage of the RNA interference pathway in the germ granules of C. elegans, examining the molecules that physically interact with a key protein. This work revealed a new protein called SIMR-1. Looking into the role of SIMR-1 showed that the protein is required to amplify secondary small RNAs, but not to identify target sequences. However, it only promotes the creation of secondary small RNAs if a specific subtype of primary small RNAs have recognized the target RNAs for silencing. Further experiments also showed that within the germ granule, SIMR-1 is present in a separate substructure different from any compartment previously identified. This suggests that each substep of the RNA interference process takes place at a different location in the granule. In both C. elegans and humans, disruptions in the RNA interference pathway can lead to conditions such as cancer or infertility. Dissecting the roles of the proteins involved in this process in roundworms may help to better grasp how this process unfolds in mammals, and how it could be corrected in the case of disease.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Domínio Tudor/genética , Animais , Feminino , Masculino
2.
PLoS Genet ; 14(7): e1007542, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30036386

RESUMO

In C. elegans, efficient RNA silencing requires small RNA amplification mediated by RNA-dependent RNA polymerases (RdRPs). RRF-1, an RdRP, and other Mutator complex proteins localize to Mutator foci, which are perinuclear germline foci that associate with nuclear pores and P granules to facilitate small RNA amplification. The Mutator complex protein MUT-16 is critical for Mutator foci assembly. By analyzing small deletions of MUT-16, we identify specific regions of the protein that recruit other Mutator complex components and demonstrate that it acts as a scaffolding protein. We further determine that the C-terminal region of MUT-16, a portion of which contains predicted intrinsic disorder, is necessary and sufficient to promote Mutator foci formation. Finally, we establish that MUT-16 foci have many properties consistent with a phase-separated condensate and propose that Mutator foci form through liquid-liquid phase separation of MUT-16. P granules, which contain additional RNA silencing proteins, have previously been shown to have liquid-like properties. Thus, RNA silencing in C. elegans germ cells may rely on multiple phase-separated compartments through which sorting, processing, and silencing of mRNAs occurs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas Intrinsicamente Desordenadas/metabolismo , Interferência de RNA/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Mutação em Linhagem Germinativa , Proteínas Intrinsicamente Desordenadas/genética , RNA Polimerase Dependente de RNA/genética
3.
J Cell Biol ; 216(11): 3729-3744, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28903999

RESUMO

During morphogenesis, adherens junctions (AJs) remodel to allow changes in cell shape and position while preserving adhesion. Here, we examine the function of Rho guanosine triphosphatase CDC-42 in AJ formation and regulation during Caenorhabditis elegans embryo elongation, a process driven by asymmetric epidermal cell shape changes. cdc-42 mutant embryos arrest during elongation with epidermal ruptures. Unexpectedly, we find using time-lapse fluorescence imaging that cdc-42 is not required for epidermal cell polarization or junction assembly, but rather is needed for proper junctional actin regulation during elongation. We show that the RhoGAP PAC-1/ARHGAP21 inhibits CDC-42 activity at AJs, and loss of PAC-1 or the interacting linker protein PICC-1/CCDC85A-C blocks elongation in embryos with compromised AJ function. pac-1 embryos exhibit dynamic accumulations of junctional F-actin and an increase in AJ protein levels. Our findings identify a previously unrecognized molecular mechanism for inhibiting junctional CDC-42 to control actin organization and AJ protein levels during epithelial morphogenesis.


Assuntos
Actinas/metabolismo , Junções Aderentes/enzimologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Epiderme/enzimologia , Células Epiteliais/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Embrião não Mamífero/enzimologia , Epiderme/embriologia , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Morfogênese , Mutação , Fenótipo , Transdução de Sinais , Fatores de Tempo
4.
Elife ; 4: e09648, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26575289

RESUMO

Changing receptor abundance at synapses is an important mechanism for regulating synaptic strength. Synapses contain two pools of receptors, immobilized and diffusing receptors, both of which are confined to post-synaptic elements. Here we show that immobile and diffusing GABA(A) receptors are stabilized by distinct synaptic scaffolds at C. elegans neuromuscular junctions. Immobilized GABA(A) receptors are stabilized by binding to FRM-3/EPB4.1 and LIN-2A/CASK. Diffusing GABA(A) receptors are stabilized by the synaptic adhesion molecules Neurexin and Neuroligin. Inhibitory post-synaptic currents are eliminated in double mutants lacking both scaffolds. Neurexin, Neuroligin, and CASK mutations are all linked to Autism Spectrum Disorders (ASD). Our results suggest that these mutations may directly alter inhibitory transmission, which could contribute to the developmental and cognitive deficits observed in ASD.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Regulação da Expressão Gênica , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Receptores de GABA-A/metabolismo , Animais , Transtorno Autístico/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Humanos , Ligação Proteica , Receptores de GABA-A/genética
5.
Nat Cell Biol ; 17(6): 726-35, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25938815

RESUMO

Cell contacts provide spatial cues that polarize early embryos and epithelial cells. The homophilic adhesion protein E-cadherin is required for contact-induced polarity in many cells. However, it is debated whether E-cadherin functions instructively as a spatial cue, or permissively by ensuring adequate adhesion so that cells can sense other contact signals. In Caenorhabditis elegans, contacts polarize early embryonic cells by recruiting the RhoGAP PAC-1 to the adjacent cortex, inducing PAR protein asymmetry. Here we show that the E-cadherin HMR-1, which is dispensable for adhesion, functions together with the α-catenin HMP-1, the p120 catenin JAC-1, and the previously uncharacterized linker PICC-1 (human CCDC85A-C) to bind PAC-1 and recruit it to contacts. Mislocalizing the HMR-1 intracellular domain to contact-free surfaces draws PAC-1 to these sites and depolarizes cells, demonstrating an instructive role for HMR-1 in polarization. Our findings identify an E-cadherin-mediated pathway that translates cell contacts into cortical polarity by directly recruiting a symmetry-breaking factor to the adjacent cortex.


Assuntos
Caderinas/metabolismo , Caenorhabditis elegans/embriologia , Cateninas/metabolismo , alfa Catenina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Adesão Celular , Polaridade Celular , Embrião não Mamífero/metabolismo , Células Epiteliais/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , delta Catenina
6.
Science ; 320(5884): 1771-4, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18583611

RESUMO

Early embryos of some metazoans polarize radially to facilitate critical patterning events such as gastrulation and asymmetric cell division; however, little is known about how radial polarity is established. Early embryos of Caenorhabditis elegans polarize radially when cell contacts restrict the polarity protein PAR-6 to contact-free cell surfaces, where PAR-6 regulates gastrulation movements. We have identified a Rho guanosine triphosphatase activating protein (RhoGAP), PAC-1, which mediates C. elegans radial polarity and gastrulation by excluding PAR-6 from contacted cell surfaces. We show that PAC-1 is recruited to cell contacts, and we suggest that PAC-1 controls radial polarity by restricting active CDC-42 to contact-free surfaces, where CDC-42 binds and recruits PAR-6. Thus, PAC-1 provides a dynamic molecular link between cell contacts and PAR proteins that polarizes embryos radially.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Comunicação Celular , Membrana Celular/metabolismo , Polaridade Celular , Embrião não Mamífero/citologia , Proteínas Ativadoras de GTPase/metabolismo , Animais , Padronização Corporal , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Citoplasma/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Gastrulação , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo
7.
Blood Coagul Fibrinolysis ; 19(1): 60-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18180617

RESUMO

Fucoidan and chondroitin-6-sulfate were oversulfated using chlorosulfonic acid-pyridine complex and were isolated as the sodium salt. Infrared analysis of oversulfated compounds showed introduction of sulfate groups in new positions, and in-vitro studies of the compounds showed a significant increase in the anticoagulant property. Addition of 28.6 microg/ml oversulfated compound gave a two-fold to four-fold increase in the rate of enhancement of activation of glutamic plasminogen by tissue plasminogen activator using 0.05 mol/l Tris buffer (pH 7.35) containing physiological concentrations of NaCl (0.9%). Under these conditions, unfractionated heparin was not active and the native compounds gave less than 30% enhancement. In the present study, the effect of lysine or cyanogen bromide-treated fibrinogen, alone or in combination with the oversulfated compounds, on the activation of glutamic plasminogen by tissue plasminogen activator was investigated. Addition of 16.2 mmol/l L-lysine gave three-fold to four-fold enhancement of activation, which was further enhanced to five-fold to six-fold by addition of 2.86 microg/ml oversulfated chondroitin-6-sulfate or oversulfated fucoidan. Cyanogen bromide-treated fibrinogen (50 microg/ml) gave a 10-fold enhancement of activation by itself, and addition of 2.86 microg/ml oversulfated compounds amplified this to 15-fold. A 25-fold to 35-fold enhancement of activation of glutamic plasminogen was obtained when 2.86 microg/ml oversulfated compounds were combined with 16.2 mmol/l lysine and 50 microg/ml cyanogen bromide-treated fibrinogen. Dilution studies showed that the amplification of the enhancement of lysine by 2.86 microg/ml oversulfated compound was related to interaction of the cofactors with both glutamic plasminogen and tissue plasminogen activator.


Assuntos
Sulfatos de Condroitina/farmacologia , Lisina/farmacologia , Plasminogênio/efeitos dos fármacos , Polissacarídeos/farmacologia , Sulfatos de Condroitina/química , Brometo de Cianogênio/química , Brometo de Cianogênio/farmacologia , Interações Medicamentosas , Fibrinogênio/química , Fibrinogênio/fisiologia , Humanos , Plasminogênio/fisiologia , Polissacarídeos/química , Ligação Proteica , Relação Estrutura-Atividade , Sulfatos/química , Ativador de Plasminogênio Tecidual/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/metabolismo
8.
Dev Biol ; 286(2): 637-46, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16154126

RESUMO

Functional inactivation of divergent bone morphogenetic proteins (BMPs) causes discrete disturbances during mouse development. BMP4-deficient embryos display mesodermal patterning defects at early post-implantation stages, whereas loss of BMP7 selectively disrupts kidney and eye morphogenesis. Whether these distinct phenotypes simply reflect differences in expression domains, or alternatively intrinsic differences in the signaling properties of these ligands remains unknown. To address this issue, we created embryos exclusively expressing BMP4 under control of the BMP7 locus. Surprisingly, this novel knock-in allele efficiently rescues kidney development. These results demonstrate unequivocally that these structurally divergent BMP family members, sharing only minimal sequence similarity can function interchangeably to activate all the essential signaling pathways for growth and morphogenesis of the kidney. Thus, we conclude that partially overlapping expression patterns of BMPs serve to modulate strength of BMP signaling rather than create discrete fields of ligands with intrinsically different signaling properties.


Assuntos
Proteínas Morfogenéticas Ósseas/deficiência , Proteínas Morfogenéticas Ósseas/fisiologia , Rim/crescimento & desenvolvimento , Fator de Crescimento Transformador beta/deficiência , Animais , Proteína Morfogenética Óssea 4 , Proteína Morfogenética Óssea 7 , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Morfogênese , Transdução de Sinais
9.
Genes Dev ; 19(1): 152-63, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15630024

RESUMO

Smad2 and Smad3 are closely related effectors of TGFbeta/Nodal/Activin-related signaling. Smad3 mutant mice develop normally, whereas Smad2 plays an essential role in patterning the embryonic axis and specification of definitive endoderm. Alternative splicing of Smad2 exon 3 gives rise to two distinct protein isoforms. The short Smad2(Deltaexon3) isoform, unlike full-length Smad2, Smad2(FL), retains DNA-binding activity. Here, we show that Smad2(FL) and Smad2(Deltaexon3) are coexpressed throughout mouse development. Directed expression of either Smad2(Deltaexon3) or Smad3, but not Smad2(FL), restores the ability of Smad2-deficient embryonic stem (ES) cells to contribute descendants to the definitive endoderm in wild-type host embryos. Mice engineered to exclusively express Smad2(Deltaexon3) correctly specify the anterior-posterior axis and definitive endoderm, and are viable and fertile. Moreover, introducing a human Smad3 cDNA into the mouse Smad2 locus similarly rescues anterior-posterior patterning and definitive endoderm formation and results in adult viability. Collectively, these results demonstrate that the short Smad2(Deltaexon3) isoform or Smad3, but not full-length Smad2, activates all essential target genes downstream of TGFbeta-related ligands, including those regulated by Nodal.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Crescimento e Desenvolvimento/genética , Transativadores/genética , Transativadores/fisiologia , Animais , Padronização Corporal , Embrião de Mamíferos , Endoderma , Fertilidade/genética , Viabilidade Fetal/genética , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Isoformas de Proteínas/fisiologia , Proteína Smad2 , Proteína Smad3 , Células-Tronco
10.
Development ; 131(15): 3501-12, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15215210

RESUMO

Genetic and biochemical data have identified Smad4 as a key intracellular effector of the transforming growth factor beta (TGFbeta superfamily of secreted ligands. In mouse, Smad4-null embryos do not gastrulate, a phenotype consistent with loss of other TGFbeta-related signaling components. Chimeric analysis reveals a primary requirement for Smad4 in the extra-embryonic lineages; however, within the embryo proper, characterization of the specific roles of Smad4 during gastrulation and lineage specification remains limited. We have employed a Smad4 conditional allele to specifically inactivate the Smad4 gene in the early mouse epiblast. Loss of Smad4 in this tissue results in a profound failure to pattern derivatives of the anterior primitive streak, such as prechordal plate, node, notochord and definitive endoderm. In contrast to these focal defects, many well-characterized TGFbeta- and Bmp-regulated processes involved in mesoderm formation and patterning are surprisingly unaffected. Mutant embryos form abundant extra-embryonic mesoderm, including allantois, a rudimentary heart and middle primitive streak derivatives such as somites and lateral plate mesoderm. Thus, loss of Smad4 in the epiblast results not in global developmental abnormalities but instead in restricted patterning defects. These results suggest that Smad4 potentiates a subset of TGFbeta-related signals during early embryonic development, but is dispensable for others.


Assuntos
Padronização Corporal , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário e Fetal , Morfogênese/fisiologia , Transdução de Sinais , Transativadores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Alantoide/fisiologia , Alelos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/fisiologia , Endoderma/fisiologia , Células Germinativas/fisiologia , Coração/embriologia , Hibridização In Situ , Mesoderma/fisiologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Proteína Smad4 , Transativadores/genética
11.
J Org Chem ; 61(2): 662-665, 1996 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-11666988

RESUMO

3-Mercapto-2(1H)-pyridinone (1) can be synthesized in three simple high-yielding steps from readily available 2-tert-butylthiazolo[4,5-b]pyridine (2). Its disodium salt condenses with o-chloronitrobenzene, 2-chloro-3-nitropyridine, and 3-chloro-4-nitropyridine 1-oxide to give respectively 4-azaphenoxathiine (10), 1,6-diazaphenoxathiine (12), and 2,6-diazaphenoxathiine 2-oxide (14) which reduces to 2,6-diazaphenoxathiine (15). The structures of these previously unreported azaphenoxathiine systems were confirmed by assignment of their respective (13)C NMR spectra.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...