Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Front Plant Sci ; 15: 1343148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516672

RESUMO

Wheat stem rust caused by Puccinia graminis f. sp. tritici (Pgt) threatens wheat production worldwide. The objective of this study was to characterize wheat stem rust resistance in 'Linkert', a variety with adult plant resistance effective to emerging wheat stem rust pathogen strain Ug99. Two doubled haploid (DH) populations and one recombinant inbred line (RIL) population were developed with 'Linkert' as a stem rust resistant parent. Hard red spring wheat variety 'Forefront' and genetic stock 'LMPG' were used as stem rust susceptible parents of the DH populations. Breeding line 'MN07098-6' was used as a susceptible parent of the RIL population. Both DH and RIL populations with their parents were evaluated both at the seedling stage and in the field against Pgt races. Genotyping data of the DH populations were generated using the wheat iSelect 90k SNP assay. The RIL population was genotyped by genotyping-by-sequencing. We found QTL consistently associated with wheat stem rust resistance on chromosome 2BS for the Linkert/Forefront DH population and the Linkert/MN07098-6 RIL population both in Ethiopia and Kenya. Additional reliable QTL were detected on chromosomes 5BL (125.91 cM) and 4AL (Sr7a) for the Linkert/LMPG population in Ethiopia and Kenya. Different QTL identified in the populations reflect the importance of examining the genetics of resistance in populations derived from adapted germplasm (Forefront and MN07098-6) in addition to a genetic stock (LMPG). The associated markers in this study could be used to track and select for the identified QTL in wheat breeding programs.

2.
Patterns (N Y) ; 4(11): 100864, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38035190

RESUMO

Artificial intelligence (AI) tools are of great interest to healthcare organizations for their potential to improve patient care, yet their translation into clinical settings remains inconsistent. One of the reasons for this gap is that good technical performance does not inevitably result in patient benefit. We advocate for a conceptual shift wherein AI tools are seen as components of an intervention ensemble. The intervention ensemble describes the constellation of practices that, together, bring about benefit to patients or health systems. Shifting from a narrow focus on the tool itself toward the intervention ensemble prioritizes a "sociotechnical" vision for translation of AI that values all components of use that support beneficial patient outcomes. The intervention ensemble approach can be used for regulation, institutional oversight, and for AI adopters to responsibly and ethically appraise, evaluate, and use AI tools.

3.
Plants (Basel) ; 12(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895995

RESUMO

Fusarium head blight (FHB) is a destructive fungal disease of wheat that causes significant economic loss due to lower yields and the contamination of grain with fungal toxins (mycotoxins), particularly deoxynivalenol (DON). FHB disease spread and mycotoxin contamination has been shown to worsen at elevated CO2, therefore, it is important to identify climate-resilient FHB resistance. This work evaluates whether wheat with the Fhb1 quantitative trait locus (QTL), the most widely deployed FHB resistance locus in wheat breeding programs, provides reliable disease resistance at elevated CO2. Near-isogenic wheat lines (NILs) derived from either a highly FHB susceptible or a more FHB resistant genetic background, with or without the Fhb1 QTL, were grown in growth chambers at ambient (400 ppm) and elevated (1000 ppm) CO2 conditions. Wheat was inoculated with Fusarium graminearum and evaluated for FHB severity. At elevated CO2, the NILs derived from more FHB-resistant wheat had increased disease spread, greater pathogen biomass and mycotoxin contamination, and lower rates of DON detoxification; this was not observed in wheat from a FHB susceptible genetic background. The Fhb1 QTL was not associated with increased disease severity in wheat grown at elevated CO2 and provided reliable disease resistance.

4.
J Med Access ; 7: 27550834231177507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323852

RESUMO

The development of novel therapeutics for rare "orphan" diseases has brought a growing tension between the desire to accelerate access to these breakthrough therapies and the need to generate quality evidence regarding their safety and efficacy. Accelerating the pace of drug development and approval may facilitate the rapid delivery of benefits to patients and cost savings for research and development, which theoretically improves affordability of drugs for the health system. However, several ethical challenges arise with expedited approval, compassionate release of drugs, and subsequent study of drugs in "real-world" settings. In this article, we explore the changing landscape of drug approval and the ethical challenges expedited approval creates for patients, caregivers, clinicians, and institutions, and propose tangible strategies to maximize the benefits of "real-world" data acquisition while mitigating risks to patients, clinicians, and institutions.

5.
Sci Total Environ ; 895: 164975, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37336402

RESUMO

Perennial grains have potential to contribute to ecological intensification of food production by enabling the direct harvest of human-edible crops without requiring annual cycles of disturbance and replanting. Studies of prototype perennial grains and other herbaceous perennials point to the ability of agroecosystems including these crops to protect water quality, enhance wildlife habitat, build soil quality, and sequester soil carbon. However, genetic improvement of perennial grain candidates has been hindered by limited investment due to uncertainty about whether the approach is viable. As efforts to develop perennial grain crops have expanded in past decades, critiques of the approach have arisen. With a recent report of perennial rice producing yields equivalent to those of annual rice over eight consecutive harvests, many theoretical concerns have been alleviated. Some valid questions remain over the timeline for new crop development, but we argue these may be mitigated by implementation of recent technological advances in crop breeding and genetics such as low-cost genotyping, genomic selection, and genome editing. With aggressive research investment in the development of new perennial grain crops, they can be developed and deployed to provide atmospheric greenhouse gas reductions.


Assuntos
Agricultura , Melhoramento Vegetal , Humanos , Grão Comestível , Produtos Agrícolas , Solo
6.
JAMA Netw Open ; 6(5): e2310659, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126349

RESUMO

Importance: Understanding the views and values of patients is of substantial importance to developing the ethical parameters of artificial intelligence (AI) use in medicine. Thus far, there is limited study on the views of children and youths. Their perspectives contribute meaningfully to the integration of AI in medicine. Objective: To explore the moral attitudes and views of children and youths regarding research and clinical care involving health AI at the point of care. Design, Setting, and Participants: This qualitative study recruited participants younger than 18 years during a 1-year period (October 2021 to March 2022) at a large urban pediatric hospital. A total of 44 individuals who were receiving or had previously received care at a hospital or rehabilitation clinic contacted the research team, but 15 were found to be ineligible. Of the 29 who consented to participate, 1 was lost to follow-up, resulting in 28 participants who completed the interview. Exposures: Participants were interviewed using vignettes on 3 main themes: (1) health data research, (2) clinical AI trials, and (3) clinical use of AI. Main Outcomes and Measures: Thematic description of values surrounding health data research, interventional AI research, and clinical use of AI. Results: The 28 participants included 6 children (ages, 10-12 years) and 22 youths (ages, 13-17 years) (16 female, 10 male, and 3 trans/nonbinary/gender diverse). Mean (SD) age was 15 (2) years. Participants were highly engaged and quite knowledgeable about AI. They expressed a positive view of research intended to help others and had strong feelings about the uses of their health data for AI. Participants expressed appreciation for the vulnerability of potential participants in interventional AI trials and reinforced the importance of respect for their preferences regardless of their decisional capacity. A strong theme for the prospective use of clinical AI was the desire to maintain bedside interaction between the patient and their physician. Conclusions and Relevance: In this study, children and youths reported generally positive views of AI, expressing strong interest and advocacy for their involvement in AI research and inclusion of their voices for shared decision-making with AI in clinical care. These findings suggest the need for more engagement of children and youths in health care AI research and integration.


Assuntos
Inteligência Artificial , Medicina , Humanos , Masculino , Criança , Feminino , Adolescente , Pesquisa Qualitativa , Emoções , Tomada de Decisão Compartilhada
7.
Glob Chang Biol ; 29(4): 926-934, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416581

RESUMO

Wheat is a globally important crop and one of the "big three" US field crops. But unlike the other two (maize and soybean), in the United States its development is commercially unattractive, and so its breeding takes place primarily in public universities. Troublingly, the incentive structures within these universities may be hindering genetic improvement just as climate change is complicating breeding efforts. "Business as usual" in the US public wheat-breeding infrastructure may not sustain productivity increases. To address this concern, we held a multidisciplinary conference in which researchers from 12 US (public) universities and one European university shared the current state of knowledge in their disciplines, aired concerns, and proposed initiatives that could facilitate maintaining genetic improvement of wheat in the face of climate change. We discovered that climate-change-oriented breeding efforts are currently considered too risky and/or costly for most university wheat breeders to undertake, leading to a relative lack of breeding efforts that focus on abiotic stressors such as drought and heat. We hypothesize that this risk/cost burden can be reduced through the development of appropriate germplasm, relevant screening mechanisms, consistent germplasm characterization, and innovative models predicting the performance of germplasm under projected future climate conditions. However, doing so will require coordinated, longer-term, inter-regional efforts to generate phenotype data, and the modification of incentive structures to consistently reward such efforts.


Assuntos
Mudança Climática , Triticum , Triticum/genética , Melhoramento Vegetal , Temperatura Alta , Secas
8.
Front Plant Sci ; 13: 1034406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518513

RESUMO

Fusarium head blight, a devastating cereal crop disease, can cause significant yield losses and contaminate grain with hazardous fungal toxins. Concerningly, recent evidence indicates that substantial grain protein content loss is likely to occur in wheat that is moderately resistant to head blight when it is grown at elevated CO2. Although wheat breeders in North America utilize a number of resistance sources and genes to reduce pathogen damage, the Fhb1 gene is widely deployed. To determine whether Fhb1 is associated with the protein content loss at elevated CO2, twelve near-isogenic spring wheat lines from either a susceptible or moderately susceptible genetic background, and with, or without the Fhb1 QTL, were grown at ambient and elevated CO2 conditions. The near-isogenic lines were evaluated for differences in physiology, productivity, and grain protein content. Our results showed that the Fhb1 QTL did not have any significant effect on plant growth, development, yield, or grain protein content at ambient or elevated CO2. Therefore, other factors in the moderately susceptible wheat genetic background are likely responsible for the more severe grain protein loss at elevated CO2.

9.
Plant Genome ; 15(4): e20274, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36263894

RESUMO

Stem rust of wheat (Triticum spp.), caused by Puccinia graminis f. sp. tritici (Pgt), is one of the most impactful wheat diseases because of its threat to global wheat production. While disease mitigation has primarily been achieved through the deployment of resistant wheat varieties, emerging new virulent races continue to pose risks to the crop. For example, races such as Ug99 (TTKSK), TKTTF, and TTRTF have caused epidemics in different wheat growing regions of the world in recent years. A continual search for new and effective sources of resistance is therefore necessary to safeguard wheat production. This study assessed a breeding panel from the Ethiopian Institute of Agricultural Research (EIAR) wheat breeding program for seedling and field plant resistance to TTRTF and reports genomic regions conferring resistance to TTRTF. Trait correlations (r) were medium to strong (range = .38-.71) and heritabilities were moderate (.32-.56). Association analysis for resistance to TTRTF resulted in detection of 20 markers in 11 chromosomes; the marker S1B_175439851 was associated with resistance at both seedling and adult plant stages. Models with two to four QTL combinations reduced seedling and field disease severity by 12-48 and 9-17%, respectively. Genomic prediction for TTRTF resistance resulted in low to moderately-high predictions (mean correlations of .25-.47). Identification of resistant lines and QTL in the EIAR population is expected to assist in selection toward improved resistance to TTRTF. Specifically, the application of genomic selection (GS) in identifying resistant lines in future related breeding populations will further assist breeding efforts against this new stem rust pathogen race.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Plântula/genética , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética
10.
Physiol Plant ; 174(5): e13752, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36281842

RESUMO

Genetic manipulation of whole-plant transpiration rate (TR) response to increasing atmospheric vapor pressure deficit (VPD) is a promising approach for crop adaptation to various drought regimes under current and future climates. Genotypes with a non-linear TR response to VPD are expected to achieve yield gains under terminal drought, thanks to a water conservation strategy, while those with a linear response exhibit a consumptive strategy that is more adequate for well-watered or transient-drought environments. In wheat, previous efforts indicated that TR has a genetic basis under naturally fluctuating conditions, but because TR is responsive to variation in temperature, photosynthetically active radiation, and evaporative demand, the genetic basis of its response VPD per se has never been isolated. To address this, we developed a controlled-environment gravimetric phenotyping approach where we imposed VPD regimes independent from other confounding environmental variables. We screened three nested association mapping populations totaling 150 lines, three times over a 3-year period. The resulting dataset, based on phenotyping nearly 1400 plants, enabled constructing 63-point response curves for each genotype, which were subjected to a genome-wide association study. The analysis revealed a hotspot for TR response to VPD on chromosome 5A, with SNPs explaining up to 17% of the phenotypic variance. The key SNPs were found in haploblocks that are enriched in membrane-associated genes, consistent with the hypothesized physiological determinants of the trait. These results indicate a promising potential for identifying new alleles and designing next-gen wheat cultivars that are better adapted to current and future drought regimes.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Pressão de Vapor , Triticum/genética , Folhas de Planta/fisiologia , Transpiração Vegetal/genética
12.
Front Plant Sci ; 13: 871130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574146

RESUMO

Intermediate wheatgrass (IWG) is a perennial forage grass that is currently being domesticated as a grain crop. It is a primarily wind-pollinated outcrossing species and expresses severe inbreeding depression when self-pollinated. Characterization of pollen dispersal, mating parameters, and change in genetic diversity due to pollen movement is currently lacking in IWG. In this study, we examined pollen dispersal in an IWG selection nursery by evaluating 846 progeny from 15 mother plants and traced their parentage to 374 fathers. A set of 2,500 genomic loci was used to characterize the population. We assigned paternity to 769 (91%) progeny and the average number of fathers per mother plant was 37, from an average of 56 progeny examined per mother. An extensive number (80%) of pollination events occurred within 10 m of the mother plants. Pollination success was not correlated with trait attributes of the paternal genotypes. Mating system analysis confirmed that IWG is highly outcrossing and inbreeding was virtually absent. Neither genetic diversity nor the genome-estimated trait values of progeny were significantly affected by pollinator distance. The distance of pollinator in an IWG breeding nursery therefore was not found to be a major contributor in maintaining genetic diversity. These findings reveal the pollen dispersal model in IWG for the first time and its effect on genetic diversity, which will be valuable in designing future IWG breeding populations. Information generated and discussed in this study could be applied in understanding gene flow and genetic diversity of other open-pollinated species.

13.
BMC Plant Biol ; 22(1): 218, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35477400

RESUMO

BACKGROUND: Intermediate wheatgrass (IWG) is a novel perennial grain crop currently undergoing domestication. It offers important ecosystem benefits while producing grain suitable for human consumption. Several aspects of plant biology and genetic control are yet to be studied in this new crop. To understand trait behavior and genetic characterization of kernel color in IWG breeding germplasm from the University of Minnesota was evaluated for the CIELAB components (L*, a*, b*) and visual differences. Trait values were used in a genome-wide association scan to reveal genomic regions controlling IWG's kernel color. The usability of genomic prediction in predicting kernel color traits was also evaluated using a four-fold cross validation method. RESULTS: A wide phenotypic variation was observed for all four kernel color traits with pairwise trait correlations ranging from - 0.85 to 0.27. Medium to high estimates of broad sense trait heritabilities were observed and ranged from 0.41 to 0.78. A genome-wide association scan with single SNP markers detected 20 significant marker-trait associations in 9 chromosomes and 23 associations in 10 chromosomes using multi-allelic haplotype blocks. Four of the 20 significant SNP markers and six of the 23 significant haplotype blocks were common between two or more traits. Evaluation of genomic prediction of kernel color traits revealed the visual score to have highest mean predictive ability (r2 = 0.53); r2 for the CIELAB traits ranged from 0.29-0.33. A search for candidate genes led to detection of seven IWG genes in strong alignment with MYB36 transcription factors from other cereal crops of the Triticeae tribe. Three of these seven IWG genes had moderate similarities with R-A1, R-B1, and R-D1, the three genes that control grain color in wheat. CONCLUSIONS: We characterized the distribution of kernel color in IWG for the first time, which revealed a broad phenotypic diversity in an elite breeding germplasm. Identification of genetic loci controlling the trait and a proof-of-concept that genomic selection might be useful in selecting genotypes of interest could help accelerate the breeding of this novel crop towards specific end-use.


Assuntos
Agropyron , Estudo de Associação Genômica Ampla , Agropyron/genética , Mapeamento Cromossômico , Ecossistema , Grão Comestível/genética , Genômica , Melhoramento Vegetal , Poaceae/genética
14.
Plant Genome ; 15(2): e20211, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35484973

RESUMO

Field pennycress (Thlaspi arvense L.) is a new winter annual cash cover crop with high oil content and seed yield, excellent winter hardiness, early maturation, and resistance to most pests and diseases. It provides living cover on fallow croplands between summer seasons, and in doing so reduces nutrient leaching into water sources, mitigates soil erosion, and suppresses weed growth. The first ever genome-wide association study (GWAS) was conducted on a pennycress diversity panel to identify marker trait associations with important seed size and composition related traits. The entire population was phenotyped in three total environments over 2 yr, and seed area, length, width, thousand grain weight, total oil, and total protein were measured post-harvest with specialized high-throughput imaging and near-infrared spectroscopy. Basic unbiased linear prediction values were calculated for each trait. Seed size traits tended to have higher entry mean reliabilities (0.76-0.79) compared with oil content (0.51) and protein content (0.37). Genotyping-by-sequencing identified 33,606 high quality genome-wide single nucleotide polymorphism (SNPs) that were coupled with phenotypic data to perform GWAS for seed area, length, width, thousand grain weight, total oil, and total protein content. Fifty-nine total marker-trait associations were identified revealing genomic regions controlling each trait. The significant SNPs explained 0.06-0.18% of the total variance for that trait in our population. A list of candidate genes was identified based on their functional annotations and characterization in other species. Our results confirm that GWAS is an efficient strategy to identify significant marker-trait associations that can be incorporated into marker-assisted selection pipelines to accelerate pennycress breeding progress.


Field pennycress is an excellent winter annual oilseed that can serve as a cash cover crop. Genotyping-by-sequencing is an effective strategy to genotype pennycress affordably for high-quality genome-wide single nucleotide polymorphisms. First-ever mapping study in a field pennycress association mapping population was conducted. GWAS identified 59 significant marker-trait associations for important quantitative traits. Seed size traits had a higher reliability estimate compared with seed composition traits.


Assuntos
Estudo de Associação Genômica Ampla , Thlaspi , Estudo de Associação Genômica Ampla/métodos , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Sementes/genética , Sementes/metabolismo , Thlaspi/genética , Thlaspi/metabolismo
15.
J Agric Food Chem ; 70(13): 4152-4163, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298172

RESUMO

Wheat is an important food crop, yet its value is reduced by fungal infections (ex. Fusarium graminearum). Metabolite profiling is a useful tool for explaining resistance mechanisms. By analyzing near-isogenic lines (NILs) with contrasting Fhb1 alleles and three wheat varieties, a time course resulting in 61 relevant metabolites was studied. The presence of one metabolite as resistant related constitutive late in the time course was detected. Results confirm the presence of hydroxycinnamic acid amides conjugated with polyamine derivatives (hydroxycinnamic acid amides, HCAAs), which have been shown to induce thickening of cell walls. These compounds are shared by resistant and susceptible genotypes with no difference in intensities but vary in time as early- or late-occurring, suggesting that for the NIL studied here, HCAAs were a normal part of the host reaction. Overall, metabolites synthesized as a result of infection were observed regardless of susceptibility but occurred at different times after infection.


Assuntos
Fusarium , Cromatografia Líquida de Alta Pressão , Genótipo , Doenças das Plantas/microbiologia , Triticum/metabolismo
17.
Environ Sci Technol ; 56(4): 2300-2311, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35103467

RESUMO

Acute environmental perturbations are reported to induce deterministic microbial community assembly, while it is hypothesized that chronic perturbations promote development of alternative stable states. Such acute or chronic perturbations strongly impact on the pre-adaptation capacity to the perturbation. To determine the importance of the level of microbial pre-adaptation and the community assembly processes following acute or chronic perturbations in the context of hydrocarbon contamination, a model system of pristine and polluted (hydrocarbon-contaminated) sediments was incubated in the absence or presence (discrete or repeated) of hydrocarbon amendment. The community structure of the pristine sediments changed significantly following acute perturbation, with selection of different phylotypes not initially detectable. Conversely, historically polluted sediments maintained the initial community structure, and the historical legacy effect of chronic pollution likely facilitated community stability. An alternative stable state was also reached in the pristine sediments following chronic perturbation, further demonstrating the existence of a legacy effect. Finally, ecosystem functional resilience was demonstrated through occurrence of hydrocarbon degradation by different communities in the tested sites, but the legacy effect of perturbation also strongly influenced the biotic response. This study therefore demonstrates the importance of perturbation chronicity on microbial community assembly processes and reveals ecosystem functional resilience following environmental perturbation.


Assuntos
Ecossistema , Microbiota , Poluição Ambiental , Hidrocarbonetos/metabolismo
18.
Sci Rep ; 12(1): 15, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996967

RESUMO

The nutritional integrity of wheat is jeopardized by rapidly rising atmospheric carbon dioxide (CO2) and the associated emergence and enhanced virulence of plant pathogens. To evaluate how disease resistance traits may impact wheat climate resilience, 15 wheat cultivars with varying levels of resistance to Fusarium Head Blight (FHB) were grown at ambient and elevated CO2. Although all wheat cultivars had increased yield when grown at elevated CO2, the nutritional contents of FHB moderately resistant (MR) cultivars were impacted more than susceptible cultivars. At elevated CO2, the MR cultivars had more significant differences in plant growth, grain protein, starch, fructan, and macro and micro-nutrient content compared with susceptible wheat. Furthermore, changes in protein, starch, phosphorus, and magnesium content were correlated with the cultivar FHB resistance rating, with more FHB resistant cultivars having greater changes in nutrient content. This is the first report of a correlation between the degree of plant pathogen resistance and grain nutritional content loss in response to elevated CO2. Our results demonstrate the importance of identifying wheat cultivars that can maintain nutritional integrity and FHB resistance in future atmospheric CO2 conditions.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triticum/química , Triticum/imunologia , Resistência à Doença , Magnésio/análise , Magnésio/metabolismo , Valor Nutritivo , Fósforo/análise , Fósforo/metabolismo , Doenças das Plantas/imunologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Sementes/química , Sementes/classificação , Sementes/imunologia , Sementes/metabolismo , Triticum/classificação , Triticum/metabolismo
19.
Am J Bioeth ; 22(5): 8-22, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35048782

RESUMO

The application of artificial intelligence and machine learning (ML) technologies in healthcare have immense potential to improve the care of patients. While there are some emerging practices surrounding responsible ML as well as regulatory frameworks, the traditional role of research ethics oversight has been relatively unexplored regarding its relevance for clinical ML. In this paper, we provide a comprehensive research ethics framework that can apply to the systematic inquiry of ML research across its development cycle. The pathway consists of three stages: (1) exploratory, hypothesis-generating data access; (2) silent period evaluation; (3) prospective clinical evaluation. We connect each stage to its literature and ethical justification and suggest adaptations to traditional paradigms to suit ML while maintaining ethical rigor and the protection of individuals. This pathway can accommodate a multitude of research designs from observational to controlled trials, and the stages can apply individually to a variety of ML applications.


Assuntos
Inteligência Artificial , Comitês de Ética em Pesquisa , Atenção à Saúde , Ética em Pesquisa , Humanos , Consentimento Livre e Esclarecido , Aprendizado de Máquina , Estudos Prospectivos
20.
Plant Biotechnol J ; 20(5): 944-963, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34990041

RESUMO

Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.


Assuntos
Thlaspi , Cromossomos , Ecossistema , Genoma de Planta/genética , Anotação de Sequência Molecular , Thlaspi/genética , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...