Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(13): ar131, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37792492

RESUMO

Located in the central protuberance region of the mitoribosome and mitospecific mL38 proteins display homology to PEBP (Phosphatidylethanolamine Binding Protein) proteins, a diverse family of proteins reported to bind anionic substrates/ligands and implicated in cellular signaling and differentiation pathways. In this study, we have performed a mutational analysis of the yeast mitoribosomal protein MrpL35/mL38 and demonstrate that mutation of the PEBP-invariant ligand binding residues Asp(D)232 and Arg(R)288 impacted MrpL35/mL38's ability to support OXPHOS-based growth of the cell. Furthermore, our data indicate these residues exist in a functionally important charged microenvironment, which also includes Asp(D)167 of MrpL35/mL38 and Arg(R)127 of the neighboring Mrp7/bL27m protein. We report that mutation of each of these charged residues resulted in a strong reduction in OXPHOS complex levels that was not attributed to a corresponding inhibition of the mitochondrial translation process. Rather, our findings indicate that a disconnect exists in these mutants between the processes of mitochondrial protein translation and the events required to ensure the competency and/or availability of the newly synthesized proteins to assemble into OXPHOS enzymes. Based on our findings, we postulate that the PEBP-homology domain of MrpL35/mL38, together with its partner Mrp7/bL27m, form a key regulatory region of the mitoribosome.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Proteínas Ribossômicas/metabolismo , Biossíntese de Proteínas , Mutação/genética
2.
FEBS Lett ; 597(12): 1579-1594, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115519

RESUMO

The extreme N-terminal residues of the mitochondrial ribosomal bL27m proteins reside within the ribosomal peptidyl transferase center (PTC) and are conserved from their bacterial ancestors. Mutation or truncation of the N-terminal region of the yeast Mrp7/bL27m protein did not inhibit protein synthesis but significantly impacted the efficacy of the mitochondrial translational process with respect to yielding proteins competent to assemble into functional oxidative phosphorylation enzymes. The requirement for the N-terminal residues of Mrp7/bL27m to support normal mitotranslation was more apparent under respiratory growth. We demonstrate that the N-terminal region of Mrp7/bL27m impacts the environment of the PTC and speculate the bL27m proteins serve to fine-tune and optimize mitoribosomal activity with respect to the downstream fate of the nascent chain.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Biol Cell ; 33(1): ar7, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731012

RESUMO

We demonstrate here that mitoribosomal protein synthesis, responsible for the synthesis of oxidative phosphorylation (OXPHOS) subunits encoded by the mitochondrial genome, occurs at high levels during glycolysis fermentation and in a manner uncoupled from OXPHOS complex assembly regulation. Furthermore, we provide evidence that the mitospecific domain of Mrp7 (bL27), a mitoribosomal component, is required to maintain mitochondrial protein synthesis during fermentation but is not required under respiration growth conditions. Maintaining mitotranslation under high-glucose-fermentation conditions also involves Mam33 (p32/gC1qR homologue), a binding partner of Mrp7's mitospecific domain, and together they confer a competitive advantage for a cell's ability to adapt to respiration-based metabolism when glucose becomes limiting. Furthermore, our findings support that the mitoribosome, and specifically the central protuberance region, may be differentially regulated and/or assembled, under the different metabolic conditions of fermentation and respiration. On the basis of our findings, we propose that the purpose of mitotranslation is not limited to the assembly of OXPHOS complexes, but also plays a role in mitochondrial signaling critical for switching cellular metabolism from a glycolysis- to a respiration-based state.


Assuntos
Respiração Celular/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentação/fisiologia , Glucose/metabolismo , Glicólise , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Ribossomos Mitocondriais/metabolismo , Fosforilação Oxidativa , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...