Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 14(1): 94, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536054

RESUMO

BACKGROUND: Schistosomiasis is a neglected tropical disease endemic in 54 countries. A major Schistosoma species, Schistosoma mansoni, is sustained via a life cycle that includes both human and snail hosts. Mathematical models of S. mansoni transmission, used to elucidate the complexities of the transmission cycle and estimate the impact of intervention efforts, often focus primarily on the human host. However, S. mansoni incurs physiological costs in snails that vary with the age of the snail when first infected. Snail demography and the age of snail infection could thus affect the force of infection experienced by humans, which is frequently used to predict the impact of various control strategies. METHODS: To address how these snail host and parasite interactions influence model predictions, we developed deterministic models of schistosomiasis transmission that include varying complexity in the snail population age structure. Specifically, we examined how model outputs, such as schistosome prevalence in human and snail populations, respond to the inclusion of snail age structure. RESULTS: Our models suggest that snail population age structure modifies the force of infection experienced by humans and the relationship between snail infection prevalence and corresponding human infection prevalence. There are significant differences in estimated snail infection, cercarial density and mean worm burden between models without snail population dynamics and those with snail populations, and between models with a homogeneous snail population and those with age stratification. The variation between finely age-stratified snail populations and those grouped into only juvenile and adult life stages is, however, minimal. CONCLUSIONS: These results indicate that including snails and snail age structure in a schistosomiasis transmission model alters the relationship between snail and human infection prevalence. This highlights the importance of accounting for a heterogeneous intermediate host population in models of schistosomiasis transmission where the impact of proposed control measures is being considered.


Assuntos
Distribuição Animal , Biomphalaria/parasitologia , Modelos Teóricos , Esquistossomose/transmissão , Animais , Biomphalaria/fisiologia , Humanos , Prevalência , Esquistossomose/epidemiologia
2.
Elife ; 82019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31845890

RESUMO

Human disease agents exist within complex environments that have underappreciated effects on transmission, especially for parasites with multi-host life cycles. We examined the impact of multiple host and parasite species on transmission of the human parasite Schistosoma mansoni in Kenya. We show S. mansoni is impacted by cattle and wild vertebrates because of their role in supporting trematode parasites, the larvae of which have antagonistic interactions with S. mansoni in their shared Biomphalaria vector snails. We discovered the abundant cattle trematode, Calicophoron sukari, fails to develop in Biomphalaria pfeifferi unless S. mansoni larvae are present in the same snail. Further development of S. mansoni is subsequently prevented by C. sukari's presence. Modeling indicated that removal of C. sukari would increase S. mansoni-infected snails by two-fold. Predictable exploitation of aquatic habitats by humans and their cattle enable C. sukari to exploit S. mansoni, thereby limiting transmission of this human pathogen.


Assuntos
Biomphalaria/parasitologia , Interações Hospedeiro-Parasita , Parasitos/fisiologia , Esquistossomose/transmissão , Animais , Biodiversidade , Bovinos , Humanos , Quênia/epidemiologia , Modelos Biológicos , Schistosoma mansoni/fisiologia , Esquistossomose/epidemiologia , Trematódeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...