Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 377(6614): 1544-1550, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173841

RESUMO

The Arctic Ocean has experienced rapid warming and sea ice loss in recent decades, becoming the first open-ocean basin to experience widespread aragonite undersaturation [saturation state of aragonite (Ωarag) < 1]. However, its trend toward long-term ocean acidification and the underlying mechanisms remain undocumented. Here, we report rapid acidification there, with rates three to four times higher than in other ocean basins, and attribute it to changing sea ice coverage on a decadal time scale. Sea ice melt exposes seawater to the atmosphere and promotes rapid uptake of atmospheric carbon dioxide, lowering its alkalinity and buffer capacity and thus leading to sharp declines in pH and Ωarag. We predict a further decrease in pH, particularly at higher latitudes where sea ice retreat is active, whereas Arctic warming may counteract decreases in Ωarag in the future.


Assuntos
Mudança Climática , Água do Mar , Regiões Árticas , Carbonato de Cálcio , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
2.
Proc Natl Acad Sci U S A ; 117(34): 20363-20371, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32817527

RESUMO

The ocean is a lifeline for human existence, but current practices risk severely undermining ocean sustainability. Present and future social-ecological challenges necessitate the maintenance and development of knowledge and action by stimulating collaboration among scientists and between science, policy, and practice. Here we explore not only how such collaborations have developed in the Nordic countries and adjacent seas but also how knowledge from these regions contributes to an understanding of how to obtain a sustainable ocean. Our collective experience may be summarized in three points: 1) In the absence of long-term observations, decision-making is subject to high risk arising from natural variability; 2) in the absence of established scientific organizations, advice to stakeholders often relies on a few advisors, making them prone to biased perceptions; and 3) in the absence of trust between policy makers and the science community, attuning to a changing ocean will be subject to arbitrary decision-making with unforeseen and negative ramifications. Underpinning these observations, we show that collaboration across scientific disciplines and stakeholders and between nations is a necessary condition for appropriate actions.

3.
Ambio ; 48(8): 816-830, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30430407

RESUMO

Major climate and ecological changes affect the world's oceans leading to a number of responses including increasing water temperatures, changing weather patterns, shrinking ice-sheets, temperature-driven shifts in marine species ranges, biodiversity loss and bleaching of coral reefs. In addition, ocean pH is falling, a process known as ocean acidification (OA). The root cause of OA lies in human policies and behaviours driving society's dependence on fossil fuels, resulting in elevated CO2 concentrations in the atmosphere. In this review, we detail the state of knowledge of the causes of, and potential responses to, OA with particular focus on Swedish coastal seas. We also discuss present knowledge gaps and implementation needs.


Assuntos
Ecossistema , Água do Mar , Dióxido de Carbono , Mudança Climática , Recifes de Corais , Humanos , Concentração de Íons de Hidrogênio , Oceanos e Mares
4.
Ambio ; 48(8): 831-854, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30506502

RESUMO

Ocean temperatures are rising; species are shifting poleward, and pH is falling (ocean acidification, OA). We summarise current understanding of OA in the brackish Baltic-Skagerrak System, focussing on the direct, indirect and interactive effects of OA with other anthropogenic drivers on marine biogeochemistry, organisms and ecosystems. Substantial recent advances reveal a pattern of stronger responses (positive or negative) of species than ecosystems, more positive responses at lower trophic levels and strong indirect interactions in food-webs. Common emergent themes were as follows: OA drives planktonic systems toward the microbial loop, reducing energy transfer to zooplankton and fish; and nutrient/food availability ameliorates negative impacts of OA. We identify several key areas for further research, notably the need for OA-relevant biogeochemical and ecosystem models, and understanding the ecological and evolutionary capacity of Baltic-Skagerrak ecosystems to respond to OA and other anthropogenic drivers.


Assuntos
Ecossistema , Água do Mar , Animais , Países Bálticos , Ecologia , Concentração de Íons de Hidrogênio , Oceanos e Mares
5.
PLoS One ; 13(5): e0197502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799856

RESUMO

Ongoing acidification of the ocean through uptake of anthropogenic CO2 is known to affect marine biota and ecosystems with largely unknown consequences for marine food webs. Changes in food web structure have the potential to alter trophic transfer, partitioning, and biogeochemical cycling of elements in the ocean. Here we investigated the impact of realistic end-of-the-century CO2 concentrations on the development and partitioning of the carbon, nitrogen, phosphorus, and silica pools in a coastal pelagic ecosystem (Gullmar Fjord, Sweden). We covered the entire winter-to-summer plankton succession (100 days) in two sets of five pelagic mesocosms, with one set being CO2 enriched (~760 µatm pCO2) and the other one left at ambient CO2 concentrations. Elemental mass balances were calculated and we highlight important challenges and uncertainties we have faced in the closed mesocosm system. Our key observations under high CO2 were: (1) A significantly amplified transfer of carbon, nitrogen, and phosphorus from primary producers to higher trophic levels, during times of regenerated primary production. (2) A prolonged retention of all three elements in the pelagic food web that significantly reduced nitrogen and phosphorus sedimentation by about 11 and 9%, respectively. (3) A positive trend in carbon fixation (relative to nitrogen) that appeared in the particulate matter pool as well as the downward particle flux. This excess carbon counteracted a potential reduction in carbon sedimentation that could have been expected from patterns of nitrogen and phosphorus fluxes. Our findings highlight the potential for ocean acidification to alter partitioning and cycling of carbon and nutrients in the surface ocean but also show that impacts are temporarily variable and likely depending upon the structure of the plankton food web.


Assuntos
Ecossistema , Oceanos e Mares , Água do Mar/química , Animais , Biomassa , Dióxido de Carbono/química , Sequestro de Carbono , Simulação por Computador , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Modelos Teóricos , Estações do Ano , Suécia , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/metabolismo
6.
PLoS One ; 11(8): e0159068, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525979

RESUMO

Every year, the oceans absorb about 30% of anthropogenic carbon dioxide (CO2) leading to a re-equilibration of the marine carbonate system and decreasing seawater pH. Today, there is increasing awareness that these changes-summarized by the term ocean acidification (OA)-could differentially affect the competitive ability of marine organisms, thereby provoking a restructuring of marine ecosystems and biogeochemical element cycles. In winter 2013, we deployed ten pelagic mesocosms in the Gullmar Fjord at the Swedish west coast in order to study the effect of OA on plankton ecology and biogeochemistry under close to natural conditions. Five of the ten mesocosms were left unperturbed and served as controls (~380 µatm pCO2), whereas the others were enriched with CO2-saturated water to simulate realistic end-of-the-century carbonate chemistry conditions (~760 µatm pCO2). We ran the experiment for 113 days which allowed us to study the influence of high CO2 on an entire winter-to-summer plankton succession and to investigate the potential of some plankton organisms for evolutionary adaptation to OA in their natural environment. This paper is the first in a PLOS collection and provides a detailed overview on the experimental design, important events, and the key complexities of such a "long-term mesocosm" approach. Furthermore, we analyzed whether simulated end-of-the-century carbonate chemistry conditions could lead to a significant restructuring of the plankton community in the course of the succession. At the level of detail analyzed in this overview paper we found that CO2-induced differences in plankton community composition were non-detectable during most of the succession except for a period where a phytoplankton bloom was fueled by remineralized nutrients. These results indicate: (1) Long-term studies with pelagic ecosystems are necessary to uncover OA-sensitive stages of succession. (2) Plankton communities fueled by regenerated nutrients may be more responsive to changing carbonate chemistry than those having access to high inorganic nutrient concentrations and may deserve particular attention in future studies.


Assuntos
Plâncton/metabolismo , Estações do Ano , Água do Mar/química , Dióxido de Carbono/química , Concentração de Íons de Hidrogênio , Plâncton/crescimento & desenvolvimento
7.
Anal Chim Acta ; 786: 1-7, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23790284

RESUMO

Current anthropogenic carbon dioxide emissions generate besides global warming unprecedented acidification rates of the oceans. Recent evidence indicates the possibility that ocean acidification and low oceanic pH may be a major reason for several mass extinctions in the past. However, a major bottleneck for research on ocean acidification is long-term monitoring and the collection of consistent high-resolution pH measurements. This study presents a low-power (<1 W) small sample volume (25 µL) semiconductor based fluorescence method for real-time ship-board pH measurements at high temporal and spatial resolution (approximately 15 s and 100 m between samples). A 405 nm light emitting diode and the blue and green channels from a digital camera was used for swift detection of fluorescence from the pH sensitive dye 6,8-Dihydroxypyrene-1,3-disulfonic acid in real-time. Main principles were demonstrated by automated continuous measurements of pH in the surface water across the Baltic Sea and the Kattegat region with a large range in salinity (~3-30) and temperature (~0-25°C). Ship-board precision of salinity and temperature adjusted pH measurements were estimated as low as 0.0001 pH units.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...