Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Acoust Soc Am ; 155(6): 3983-3994, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38934563

RESUMO

Advancing age is associated with decreased sensitivity to temporal cues in word segments, particularly when target words follow non-informative carrier sentences or are spectrally degraded (e.g., vocoded to simulate cochlear-implant stimulation). This study investigated whether age, carrier sentences, and spectral degradation interacted to cause undue difficulty in processing speech temporal cues. Younger and older adults with normal hearing performed phonemic categorization tasks on two continua: a Buy/Pie contrast with voice onset time changes for the word-initial stop and a Dish/Ditch contrast with silent interval changes preceding the word-final fricative. Target words were presented in isolation or after non-informative carrier sentences, and were unprocessed or degraded via sinewave vocoding (2, 4, and 8 channels). Older listeners exhibited reduced sensitivity to both temporal cues compared to younger listeners. For the Buy/Pie contrast, age, carrier sentence, and spectral degradation interacted such that the largest age effects were seen for unprocessed words in the carrier sentence condition. This pattern differed from the Dish/Ditch contrast, where reducing spectral resolution exaggerated age effects, but introducing carrier sentences largely left the patterns unchanged. These results suggest that certain temporal cues are particularly susceptible to aging when placed in sentences, likely contributing to the difficulties of older cochlear-implant users in everyday environments.


Assuntos
Estimulação Acústica , Envelhecimento , Sinais (Psicologia) , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Idoso , Adulto Jovem , Adulto , Fatores Etários , Envelhecimento/psicologia , Envelhecimento/fisiologia , Pessoa de Meia-Idade , Fatores de Tempo , Feminino , Masculino , Acústica da Fala , Fonética , Audiometria da Fala , Idoso de 80 Anos ou mais , Adolescente , Inteligibilidade da Fala
2.
Hear Res ; 448: 109034, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781768

RESUMO

Older listeners have difficulty processing temporal cues that are important for word discrimination, and deficient processing may limit their ability to benefit from these cues. Here, we investigated aging effects on perception and neural representation of the consonant transition and the factors that contribute to successful perception. To further understand the neural mechanisms underlying the changes in processing from brainstem to cortex, we also examined the factors that contribute to exaggerated amplitudes in cortex. We enrolled 30 younger normal-hearing and 30 older normal-hearing participants who met the criteria of clinically normal hearing. Perceptual identification functions were obtained for the words BEAT and WHEAT on a 7-step continuum of consonant-transition duration. Auditory brainstem responses (ABRs) were recorded to click stimuli and frequency-following responses (FFRs) and cortical auditory-evoked potentials were recorded to the endpoints of the BEAT-WHEAT continuum. Perceptual performance for identification of BEAT vs. WHEAT did not differ between younger and older listeners. However, both subcortical and cortical measures of neural representation showed age group differences, such that FFR phase locking was lower but cortical amplitudes (P1 and N1) were higher in older compared to younger listeners. ABR Wave I amplitude and FFR phase locking, but not audiometric thresholds, predicted early cortical amplitudes. Phase locking to the transition region and early cortical peak amplitudes (P1) predicted performance on the perceptual identification function. Overall, results suggest that the neural representation of transition durations and cortical overcompensation may contribute to the ability to perceive transition duration contrasts. Cortical overcompensation appears to be a maladaptive response to decreased neural firing/synchrony.


Assuntos
Estimulação Acústica , Envelhecimento , Córtex Auditivo , Sinais (Psicologia) , Potenciais Evocados Auditivos do Tronco Encefálico , Percepção da Fala , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Envelhecimento/fisiologia , Envelhecimento/psicologia , Idoso , Percepção da Fala/fisiologia , Pessoa de Meia-Idade , Córtex Auditivo/fisiologia , Fatores Etários , Limiar Auditivo , Eletroencefalografia , Fatores de Tempo , Vias Auditivas/fisiologia , Potenciais Evocados Auditivos
3.
Ear Hear ; 45(1): 142-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37434283

RESUMO

OBJECTIVES: This study was designed to examine the effects of hearing aid delay on the neural representation of the temporal envelope. It was hypothesized that the comb-filter effect would disrupt neural phase locking, and that shorter hearing aid delays would minimize this effect. DESIGN: Twenty-one participants, ages 50 years and older, with bilateral mild-to-moderate sensorineural hearing loss were recruited through print advertisements in local senior newspapers. They were fitted with three different sets of hearing aids with average processing delays that ranged from 0.5 to 7 msec. Envelope-following responses (EFRs) were recorded to a 50-msec /da/ syllable presented through a speaker placed 1 meter in front of the participants while they wore the three sets of hearing aids with open tips. Phase-locking factor (PLF) and stimulus-to-response (STR) correlations were calculated from these recordings. RESULTS: Recordings obtained while wearing hearing aids with a 0.5-msec processing delay showed higher PLF and STR correlations compared with those with either 5-msec or 7-msec delays. No differences were noted between recordings of hearing aids with 5-msec and 7-msec delays. The degree of difference between hearing aids was greater for individuals who had milder degrees of hearing loss. CONCLUSIONS: Hearing aid processing delays disrupt phase locking due to mixing of processed and unprocessed sounds in the ear canal when using open domes. Given previous work showing that better phase locking correlates with better speech-in-noise performance, consideration should be given to reducing hearing aid processing delay in the design of hearing aid algorithms.


Assuntos
Surdez , Auxiliares de Audição , Perda Auditiva Neurossensorial , Percepção da Fala , Humanos , Perda Auditiva Neurossensorial/reabilitação , Fala , Ruído , Percepção da Fala/fisiologia
4.
J Neurophysiol ; 129(6): 1359-1377, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37096924

RESUMO

Understanding speech in a noisy environment is crucial in day-to-day interactions and yet becomes more challenging with age, even for healthy aging. Age-related changes in the neural mechanisms that enable speech-in-noise listening have been investigated previously; however, the extent to which age affects the timing and fidelity of encoding of target and interfering speech streams is not well understood. Using magnetoencephalography (MEG), we investigated how continuous speech is represented in auditory cortex in the presence of interfering speech in younger and older adults. Cortical representations were obtained from neural responses that time-locked to the speech envelopes with speech envelope reconstruction and temporal response functions (TRFs). TRFs showed three prominent peaks corresponding to auditory cortical processing stages: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). Older adults showed exaggerated speech envelope representations compared with younger adults. Temporal analysis revealed both that the age-related exaggeration starts as early as ∼50 ms and that older adults needed a substantially longer integration time window to achieve their better reconstruction of the speech envelope. As expected, with increased speech masking envelope reconstruction for the attended talker decreased and all three TRF peaks were delayed, with aging contributing additionally to the reduction. Interestingly, for older adults the late peak was delayed, suggesting that this late peak may receive contributions from multiple sources. Together these results suggest that there are several mechanisms at play compensating for age-related temporal processing deficits at several stages but which are not able to fully reestablish unimpaired speech perception.NEW & NOTEWORTHY We observed age-related changes in cortical temporal processing of continuous speech that may be related to older adults' difficulty in understanding speech in noise. These changes occur in both timing and strength of the speech representations at different cortical processing stages and depend on both noise condition and selective attention. Critically, their dependence on noise condition changes dramatically among the early, middle, and late cortical processing stages, underscoring how aging differentially affects these stages.


Assuntos
Percepção da Fala , Fala , Fala/fisiologia , Percepção Auditiva , Ruído , Percepção da Fala/fisiologia , Estimulação Acústica/métodos
5.
J Assoc Res Otolaryngol ; 23(6): 771-786, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35948694

RESUMO

The ability to understand speech in complex environments depends on the brain's ability to preserve the precise timing characteristics of the speech signal. Age-related declines in temporal processing may contribute to the older adult's experience of communication difficulty in challenging listening conditions. This study's purpose was to evaluate the effects of rate discrimination training on auditory temporal processing. A double-blind, randomized control design assigned 77 young normal-hearing, older normal-hearing, and older hearing-impaired listeners to one of two treatment groups: experimental (rate discrimination for 100- and 300-Hz pulse trains) and active control (tone detection in noise). All listeners were evaluated during pre- and post-training sessions using perceptual rate discrimination of 100-, 200-, 300-, and 400-Hz band-limited pulse trains and auditory steady-state responses (ASSRs) to the same stimuli. Training generalization was evaluated using several temporal processing measures and sentence recognition tests that included time-compressed and reverberant speech stimuli. Results demonstrated a session × training group interaction for perceptual and ASSR testing to the trained frequencies (100 and 300 Hz), driven by greater improvements in the training group than in the active control group. Further, post-test rate discrimination of the older listeners reached levels that were equivalent to those of the younger listeners at pre-test. Generalization was observed in significant improvement in rate discrimination of untrained frequencies (200 and 400 Hz) and in correlations between performance changes in rate discrimination and sentence recognition of reverberant speech. Further, non-auditory inhibition/attention performance predicted training-related improvement in rate discrimination. Overall, the results demonstrate the potential for auditory training to partially restore temporal processing in older listeners and highlight the role of cognitive function in these gains.


Assuntos
Perda Auditiva , Percepção da Fala , Percepção do Tempo , Humanos , Idoso , Percepção da Fala/fisiologia , Percepção Auditiva , Ruído
6.
Front Aging Neurosci ; 14: 884917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663566

RESUMO

Age-related hearing loss is one of the most prevalent health conditions in older adults. Although hearing aid technology has advanced dramatically, a large percentage of older adults do not use hearing aids. This untreated hearing loss may accelerate declines in cognitive and neural function and dramatically affect the quality of life. Our previous findings have shown that the use of hearing aids improves cortical and cognitive function and offsets subcortical physiological decline. The current study tested the time course of neural adaptation to hearing aids over the course of 6 months and aimed to determine whether early measures of cortical processing predict the capacity for neural plasticity. Seventeen (9 females) older adults (mean age = 75 years) with age-related hearing loss with no history of hearing aid use were fit with bilateral hearing aids and tested in six testing sessions. Neural changes were observed as early as 2 weeks following the initial fitting of hearing aids. Increases in N1 amplitudes were observed as early as 2 weeks following the hearing aid fitting, whereas changes in P2 amplitudes were not observed until 12 weeks of hearing aid use. The findings suggest that increased audibility through hearing aids may facilitate rapid increases in cortical detection, but a longer time period of exposure to amplified sound may be required to integrate features of the signal and form auditory object representations. The results also showed a relationship between neural responses in earlier sessions and the change predicted after 6 months of the use of hearing aids. This study demonstrates rapid cortical adaptation to increased auditory input. Knowledge of the time course of neural adaptation may aid audiologists in counseling their patients, especially those who are struggling to adjust to amplification. A future comparison of a control group with no use of hearing aids that undergoes the same testing sessions as the study's group will validate these findings.

7.
J Acoust Soc Am ; 151(3): 1639, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35364956

RESUMO

Auditory temporal processing declines with age, leading to potential deleterious effects on communication. In young normal-hearing listeners, perceptual rate discrimination is rate limited around 300 Hz. It is not known whether this rate limitation is similar in older listeners with hearing loss. The purpose of this study was to investigate age- and hearing-loss-related rate limitations on perceptual rate discrimination, and age- and hearing-loss-related effects on neural representation of these stimuli. Younger normal-hearing, older normal-hearing, and older hearing-impaired listeners performed a pulse-rate discrimination task at rates of 100, 200, 300, and 400 Hz. Neural phase locking was assessed using the auditory steady-state response. Finally, a battery of non-auditory cognitive tests was administered. Younger listeners had better rate discrimination, higher phase locking, and higher cognitive scores compared to both groups of older listeners. Aging, but not hearing loss, diminished neural-rate encoding and perceptual performance; however, there was no relationship between the perceptual and neural measures. Higher cognitive scores were correlated with improved perceptual performance, but not with neural phase locking. This study shows that aging, rather than hearing loss, may be a stronger contributor to poorer temporal processing, and cognitive factors such as processing speed and inhibitory control may be related to these declines.


Assuntos
Surdez , Perda Auditiva , Idoso , Percepção Auditiva , Perda Auditiva/diagnóstico , Testes Auditivos , Humanos
8.
J Acoust Soc Am ; 151(3): 2149, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35364963

RESUMO

Cochlear-implant (CI) users rely heavily on temporal envelope cues for speech understanding. This study examined whether their sensitivity to temporal cues in word segments is affected when the words are preceded by non-informative carrier sentences. Thirteen adult CI users performed phonemic categorization tasks that present primarily temporally based word contrasts: Buy-Pie contrast with word-initial stop of varying voice-onset time (VOT), and Dish-Ditch contrast with varying silent intervals preceding the word-final fricative. These words were presented in isolation or were preceded by carrier stimuli including a sentence, a sentence-envelope-modulated noise, or an unmodulated speech-shaped noise. While participants were able to categorize both word contrasts, stimulus context effects were observed primarily for the Buy-Pie contrast, such that participants reported more "Buy" responses for words with longer VOTs in conditions with carrier stimuli than in isolation. The two non-speech carrier stimuli yielded similar or even greater context effects than sentences. The context effects disappeared when target words were delayed from the carrier stimuli for ≥75 ms. These results suggest that stimulus contexts affect auditory temporal processing in CI users but the context effects appear to be cue-specific. The context effects may be governed by general auditory processes, not those specific to speech processing.


Assuntos
Implante Coclear , Implantes Cocleares , Percepção da Fala , Adulto , Sinais (Psicologia) , Humanos , Fala , Percepção da Fala/fisiologia
9.
Neuropsychologia ; 170: 108224, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35346650

RESUMO

When listening to degraded speech, listeners can use high-level semantic information to support recognition. The literature contains conflicting findings regarding older listeners' ability to benefit from semantic cues in recognizing speech, relative to younger listeners. Electrophysiologic (EEG) measures of lexical access (N400) often show that semantic context does not facilitate lexical access in older listeners; in contrast, auditory behavioral studies indicate that semantic context improves speech recognition in older listeners as much as or more than in younger listeners. Many behavioral studies of aging and the context benefit have employed signal degradation or alteration, whereas this stimulus manipulation has been absent in the EEG literature, a possible reason for the inconsistencies between studies. Here we compared the context benefit as a function of age and signal type, using EEG combined with behavioral measures. Non-native accent, a common form of signal alteration which many older adults report as a challenge in daily speech recognition, was utilized for testing. The stimuli included English sentences produced by native speakers of English and Spanish, containing target words differing in cloze probability. Listeners performed a word identification task while 32-channel cortical responses were recorded. Results show that older adults' word identification performance was poorer in the low-predictability and non-native talker conditions than the younger adults', replicating earlier behavioral findings. However, older adults did not show reduction or delay in the average N400 response as compared to younger listeners, suggesting no age-related reduction in predictive processing capability. Potential sources for discrepancies in the prior literature are discussed.


Assuntos
Percepção da Fala , Idoso , Eletroencefalografia , Potenciais Evocados , Feminino , Humanos , Idioma , Masculino , Semântica , Percepção da Fala/fisiologia
10.
Ear Hear ; 43(2): 605-619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34619687

RESUMO

OBJECTIVES: The role of subcortical synchrony in speech-in-noise (SIN) recognition and the frequency-following response (FFR) was examined in multiple listeners with auditory neuropathy. Although an absent FFR has been documented in one listener with idiopathic neuropathy who has severe difficulty recognizing SIN, several etiologies cause the neuropathy phenotype. Consequently, it is necessary to replicate absent FFRs and concomitant SIN difficulties in patients with multiple sources and clinical presentations of neuropathy to elucidate fully the importance of subcortical neural synchrony for the FFR and SIN recognition. DESIGN: Case series. Three children with auditory neuropathy (two males with neuropathy attributed to hyperbilirubinemia, one female with a rare missense mutation in the OPA1 gene) were compared to age-matched controls with normal hearing (52 for electrophysiology and 48 for speech recognition testing). Tests included standard audiological evaluations, FFRs, and sentence recognition in noise. The three children with neuropathy had a range of clinical presentations, including moderate sensorineural hearing loss, use of a cochlear implant, and a rapid progressive hearing loss. RESULTS: Children with neuropathy generally had good speech recognition in quiet but substantial difficulties in noise. These SIN difficulties were somewhat mitigated by a clear speaking style and presenting words in a high semantic context. In the children with neuropathy, FFRs were absent from all tested stimuli. In contrast, age-matched controls had reliable FFRs. CONCLUSION: Subcortical synchrony is subject to multiple forms of disruption but results in a consistent phenotype of an absent FFR and substantial difficulties recognizing SIN. These results support the hypothesis that subcortical synchrony is necessary for the FFR. Thus, in healthy listeners, the FFR may reflect subcortical neural processes important for SIN recognition.


Assuntos
Perda Auditiva Central , Percepção da Fala , Feminino , Humanos , Masculino , Ruído , Fala , Percepção da Fala/fisiologia
11.
J Assoc Res Otolaryngol ; 22(6): 719-740, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34231111

RESUMO

Age-related declines in auditory temporal processing contribute to speech understanding difficulties of older adults. These temporal processing deficits have been established primarily among acoustic-hearing listeners, but the peripheral and central contributions are difficult to separate. This study recorded cortical auditory evoked potentials from younger to middle-aged (< 65 years) and older (≥ 65 years) cochlear-implant (CI) listeners to assess age-related changes in temporal processing, where cochlear processing is bypassed in this population. Aging effects were compared to age-matched normal-hearing (NH) listeners. Advancing age was associated with prolonged P2 latencies in both CI and NH listeners in response to a 1000-Hz tone or a syllable /da/, and with prolonged N1 latencies in CI listeners in response to the syllable. Advancing age was associated with larger N1 amplitudes in NH listeners. These age-related changes in latency and amplitude were independent of stimulus presentation rate. Further, CI listeners exhibited prolonged N1 and P2 latencies and smaller P2 amplitudes than NH listeners. Thus, aging appears to degrade some aspects of auditory temporal processing when peripheral-cochlear contributions are largely removed, suggesting that changes beyond the cochlea may contribute to age-related temporal processing deficits.


Assuntos
Estimulação Acústica/métodos , Envelhecimento/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Implante Coclear , Implantes Cocleares , Percepção da Fala/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Audiometria de Resposta Evocada , Implantes Cocleares/efeitos adversos , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fala , Adulto Jovem
12.
Hear Res ; 403: 108188, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33581668

RESUMO

Age-related difficulties in speech understanding may arise from a decrease in the neural representation of speech sounds. A loss of outer hair cells or decrease in auditory nerve fibers may lead to a loss of temporal precision that can affect speech clarity. This study's purpose was to evaluate the peripheral contributors to phase-locking strength, a measure of temporal precision, in recordings to a sustained vowel in 30 younger and 30 older listeners with normal to near normal audiometric thresholds. Thresholds were obtained for pure tones and distortion-product otoacoustic emissions (DPOAEs). Auditory brainstem responses (ABRs) were recorded in quiet and in three levels of continuous white noise (+30, +20, and +10 dB SNR). Absolute amplitudes and latencies of Wave I in quiet and of Wave V across presentation conditions, in addition to the slope of Wave V amplitude and latency changes in noise, were calculated from these recordings. Frequency-following responses (FFRs) were recorded to synthesized /ba/ syllables of two durations, 170 and 260 ms, to determine whether age-related phase-locking deficits are more pronounced for stimuli that are sustained for longer durations. Phase locking was calculated for the early and late regions of the steady-state vowel for both syllables. Group differences were found for nearly every measure except for the slopes of Wave V latency and amplitude changes in noise. We found that outer hair cell function (DPOAEs) contributed to the variance in phase locking. However, the ABR and FFR differences were present after covarying for DPOAEs, suggesting the existence of temporal processing deficits in older listeners that are somewhat independent of outer hair cell function.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Percepção da Fala , Idoso , Humanos , Ruído/efeitos adversos , Fala
13.
Hear Res ; 397: 108053, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32863099

RESUMO

The older listener's ability to understand speech in challenging environments may be affected by impaired temporal processing. This review summarizes objective evidence of degraded temporal processing from studies that have used the auditory brainstem response, auditory steady-state response, the envelope- or frequency-following response, cortical auditory-evoked potentials, and neural tracking of continuous speech. Studies have revealed delayed latencies and reduced amplitudes/phase locking in subcortical responses in older vs. younger listeners, in contrast to enhanced amplitudes of cortical responses in older listeners. Reconstruction accuracy of responses to continuous speech (e.g., cortical envelope tracking) shows over-representation in older listeners. Hearing loss is a factor in many of these studies, even though the listeners would be considered to have clinically normal hearing thresholds. Overall, the ability to draw definitive conclusions regarding these studies is limited by the use of multiple stimulus conditions, small sample sizes, and lack of replication. Nevertheless, these objective measures suggest a need to incorporate new clinical measures to provide a more comprehensive assessment of the listener's speech understanding ability, but more work is needed to determine the most efficacious measure for clinical use.


Assuntos
Percepção do Tempo , Estimulação Acústica , Idoso , Envelhecimento , Potenciais Evocados Auditivos , Perda Auditiva , Humanos , Percepção da Fala
14.
J Neurophysiol ; 124(4): 1152-1164, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877288

RESUMO

Aging is associated with an exaggerated representation of the speech envelope in auditory cortex. The relationship between this age-related exaggerated response and a listener's ability to understand speech in noise remains an open question. Here, information-theory-based analysis methods are applied to magnetoencephalography recordings of human listeners, investigating their cortical responses to continuous speech, using the novel nonlinear measure of phase-locked mutual information between the speech stimuli and cortical responses. The cortex of older listeners shows an exaggerated level of mutual information, compared with younger listeners, for both attended and unattended speakers. The mutual information peaks for several distinct latencies: early (∼50 ms), middle (∼100 ms), and late (∼200 ms). For the late component, the neural enhancement of attended over unattended speech is affected by stimulus signal-to-noise ratio, but the direction of this dependency is reversed by aging. Critically, in older listeners and for the same late component, greater cortical exaggeration is correlated with decreased behavioral inhibitory control. This negative correlation also carries over to speech intelligibility in noise, where greater cortical exaggeration in older listeners is correlated with worse speech intelligibility scores. Finally, an age-related lateralization difference is also seen for the ∼100 ms latency peaks, where older listeners show a bilateral response compared with younger listeners' right lateralization. Thus, this information-theory-based analysis provides new, and less coarse-grained, results regarding age-related change in auditory cortical speech processing, and its correlation with cognitive measures, compared with related linear measures.NEW & NOTEWORTHY Cortical representations of natural speech are investigated using a novel nonlinear approach based on mutual information. Cortical responses, phase-locked to the speech envelope, show an exaggerated level of mutual information associated with aging, appearing at several distinct latencies (∼50, ∼100, and ∼200 ms). Critically, for older listeners only, the ∼200 ms latency response components are correlated with specific behavioral measures, including behavioral inhibition and speech comprehension.


Assuntos
Envelhecimento/fisiologia , Percepção da Fala , Adolescente , Adulto , Idoso , Potenciais Evocados Auditivos , Feminino , Humanos , Teoria da Informação , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Tempo de Reação , Córtex Sensório-Motor/crescimento & desenvolvimento , Córtex Sensório-Motor/fisiologia
16.
Neuroimage ; 222: 117291, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835821

RESUMO

Neural processing along the ascending auditory pathway is often associated with a progressive reduction in characteristic processing rates. For instance, the well-known frequency-following response (FFR) of the auditory midbrain, as measured with electroencephalography (EEG), is dominated by frequencies from ∼100 Hz to several hundred Hz, phase-locking to the acoustic stimulus at those frequencies. In contrast, cortical responses, whether measured by EEG or magnetoencephalography (MEG), are typically characterized by frequencies of a few Hz to a few tens of Hz, time-locking to acoustic envelope features. In this study we investigated a crossover case, cortically generated responses time-locked to continuous speech features at FFR-like rates. Using MEG, we analyzed responses in the high gamma range of 70-200 Hz to continuous speech using neural source-localized reverse correlation and the corresponding temporal response functions (TRFs). Continuous speech stimuli were presented to 40 subjects (17 younger, 23 older adults) with clinically normal hearing and their MEG responses were analyzed in the 70-200 Hz band. Consistent with the relative insensitivity of MEG to many subcortical structures, the spatiotemporal profile of these response components indicated a cortical origin with ∼40 ms peak latency and a right hemisphere bias. TRF analysis was performed using two separate aspects of the speech stimuli: a) the 70-200 Hz carrier of the speech, and b) the 70-200 Hz temporal modulations in the spectral envelope of the speech stimulus. The response was dominantly driven by the envelope modulation, with a much weaker contribution from the carrier. Age-related differences were also analyzed to investigate a reversal previously seen along the ascending auditory pathway, whereby older listeners show weaker midbrain FFR responses than younger listeners, but, paradoxically, have stronger cortical low frequency responses. In contrast to both these earlier results, this study did not find clear age-related differences in high gamma cortical responses to continuous speech. Cortical responses at FFR-like frequencies shared some properties with midbrain responses at the same frequencies and with cortical responses at much lower frequencies.


Assuntos
Envelhecimento/fisiologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Percepção da Fala/fisiologia , Adolescente , Adulto , Idoso , Córtex Auditivo/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade , Fala , Adulto Jovem
17.
J Assoc Res Otolaryngol ; 21(4): 373-391, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32643075

RESUMO

Older adults understand speech with comparative ease in quiet, but signal degradation can hinder speech understanding much more than it does in younger adults. This difficulty may result, in part, from temporal processing deficits related to the aging process and/or high-frequency hearing loss that can occur in listeners who have normal- or near-normal-hearing thresholds in the speech frequency range. Temporal processing deficits may manifest as degraded neural representation in peripheral and brainstem/midbrain structures that lead to compensation, or changes in response strength in auditory cortex. Little is understood about the process by which the neural representation of signals is improved or restored by age-related cortical compensation mechanisms. Therefore, we used vocoding to simulate spectral degradation to compare the behavioral and neural representation of words that contrast on a temporal dimension. Specifically, we used the closure duration of the silent interval between the vowel and the final affricate /t∫/ or fricative /ʃ/ of the words DITCH and DISH, respectively. We obtained perceptual identification functions and electrophysiological neural measures (frequency-following responses (FFR) and cortical auditory-evoked potentials (CAEPs)) to unprocessed and vocoded versions of these words in young normal-hearing (YNH), older normal- or near-normal-hearing (ONH), and older hearing-impaired (OHI) listeners. We found that vocoding significantly reduced the slope of the perceptual identification function in only the OHI listeners. In contrast to the limited effects of vocoding on perceptual performance, vocoding had robust effects on the FFRs across age groups, such that stimulus-to-response correlations and envelope magnitudes were significantly lower for vocoded vs. unprocessed conditions. Increases in the P1 peak amplitude for vocoded stimuli were found for both ONH and OHI listeners, but not for the YNH listeners. These results suggest that while vocoding substantially degrades early neural representation of speech stimuli in the midbrain, there may be cortical compensation in older listeners that is not seen in younger listeners.


Assuntos
Envelhecimento/fisiologia , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos , Percepção da Fala/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
19.
Ear Hear ; 41(3): 640-651, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31702596

RESUMO

OBJECTIVES: Cochlear implants (CIs) are considered a safe and effective intervention for more severe degrees of hearing loss in adults of all ages. Although older CI users ≥65 years of age can obtain large benefits in speech understanding from a CI, there is a growing body of literature suggesting that older CI users may not perform as well as younger CI users. One reason for this potential age-related limitation could be that default CI stimulation settings are not optimal for older CI users. The goal of this study was to determine whether improvements in speech understanding were possible when CI users were programmed with nondefault stimulation rates and to determine whether lower-than-default stimulation rates improved older CI users' speech understanding. DESIGN: Sentence recognition was measured acutely using different stimulation rates in 37 CI users ranging in age from 22 to 87 years. Maps were created using rates of 500, 720, 900, and 1200 pulses per second (pps) for each subject. An additional map using a rate higher than 1200 pps was also created for individuals who used a higher rate in their clinical processors. Thus, the clinical rate of each subject was also tested, including non-default rates above 1200 pps for Cochlear users and higher rates consistent with the manufacturer defaults for subjects implanted with Advanced Bionics and Med-El devices. Speech understanding performance was evaluated at each stimulation rate using AzBio and Perceptually Robust English Sentence Test Open-set (PRESTO) sentence materials tested in quiet and in noise. RESULTS: For Cochlear-brand users, speech understanding performance using non-default rates was slightly poorer when compared with the default rate (900 pps). However, this effect was offset somewhat by age, in which older subjects were able to maintain comparable performance using a 500-pps map compared with the default rate map when listening to the more difficult PRESTO sentence material. Advanced Bionics and Med-El users showed modest improvements in their overall performance using 720 pps compared with the default rate (>1200 pps). On the individual-subject level, 10 subjects (11 ears) showed a significant effect of stimulation rate, with 8 of those ears performing best with a lower-than-default rate. CONCLUSIONS: Results suggest that default stimulation rates are likely sufficient for many CI users, but some CI users at any age can benefit from a lower-than-default rate. Future work that provides experience with novel rates in everyday life has the potential to identify more individuals whose performance could be improved with changes to stimulation rate.


Assuntos
Implante Coclear , Implantes Cocleares , Surdez , Percepção da Fala , Adulto , Idoso , Humanos , Fala
20.
Trends Hear ; 23: 2331216519886688, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31808373

RESUMO

Aging may limit speech understanding outcomes in cochlear-implant (CI) users. Here, we examined age-related declines in auditory temporal processing as a potential mechanism that underlies speech understanding deficits associated with aging in CI users. Auditory temporal processing was assessed with a categorization task for the words dish and ditch (i.e., identify each token as the word dish or ditch) on a continuum of speech tokens with varying silence duration (0 to 60 ms) prior to the final fricative. In Experiments 1 and 2, younger CI (YCI), middle-aged CI (MCI), and older CI (OCI) users participated in the categorization task across a range of presentation levels (25 to 85 dB). Relative to YCI, OCI required longer silence durations to identify ditch and exhibited reduced ability to distinguish the words dish and ditch (shallower slopes in the categorization function). Critically, we observed age-related performance differences only at higher presentation levels. This contrasted with findings from normal-hearing listeners in Experiment 3 that demonstrated age-related performance differences independent of presentation level. In summary, aging in CI users appears to degrade the ability to utilize brief temporal cues in word identification, particularly at high levels. Age-specific CI programming may potentially improve clinical outcomes for speech understanding performance by older CI listeners.


Assuntos
Envelhecimento , Implantes Cocleares/estatística & dados numéricos , Percepção da Fala , Adulto , Idoso , Implante Coclear , Sinais (Psicologia) , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fala , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...