Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(3): 102522, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597189

RESUMO

The microtubule (MT)-stabilizing drug Taxol (paclitaxel) is a commonly used tool to investigate MT dynamics and MT-dependent processes. Here, we present a protocol for using Taxol-sensitized budding yeast to investigate the effect of microtubule stabilization on anaphase onset. We describe steps for establishing a log phase culture, synchronizing cells in G1, arresting in metaphase, and releasing cells into Taxol. We then detail procedures for imaging and scoring anaphase onset. This protocol facilitates maintenance and reproducibility in testing drug-sensitized and Taxol-sensitized yeast strains. For complete details on the use and execution of this protocol, please refer to Proudfoot et al.1.


Assuntos
Paclitaxel , Saccharomycetales , Paclitaxel/farmacologia , Anáfase , Reprodutibilidade dos Testes , Microtúbulos , Saccharomyces cerevisiae
2.
Cell Rep ; 27(2): 416-428.e4, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970246

RESUMO

The spindle assembly checkpoint (SAC) delays anaphase onset until sister chromosomes are bound to microtubules from opposite spindle poles. Only then can dynamic microtubules produce tension across sister kinetochores. The interdependence of kinetochore attachment and tension has proved challenging to understanding SAC mechanisms. Whether the SAC responds simply to kinetochore attachment or to tension status remains obscure. Unlike higher eukaryotes, budding yeast kinetochores bind only one microtubule, simplifying the relation between attachment and tension. We developed a Taxol-sensitive yeast model to reduce tension in fully assembled spindles. Our results show that low tension on bipolar-attached kinetochores delays anaphase onset, independent of detachment. The delay is transient relative to that imposed by unattached kinetochores. Furthermore, it is mediated by Bub1 and Bub3, but not Mad1, Mad2, and Mad3 (BubR1). Our results demonstrate that reduced tension delays anaphase onset via a signal that is temporally and mechanistically distinct from that produced by unattached kinetochores.


Assuntos
Anáfase/genética , Proteínas de Ciclo Celular/genética , Cinetocoros/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Serina-Treonina Quinases/genética , Humanos
3.
Mol Biol Cell ; 29(15): 1866-1877, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29874146

RESUMO

To function in diverse cellular processes, the dynamic properties of microtubules must be tightly regulated. Cellular microtubules are influenced by a multitude of regulatory proteins, but how their activities are spatiotemporally coordinated within the cell, or on specific microtubules, remains mostly obscure. The conserved kinesin-8 motor proteins are important microtubule regulators, and family members from diverse species combine directed motility with the ability to modify microtubule dynamics. Yet how kinesin-8 activities are appropriately deployed in the cellular context is largely unknown. Here we reveal the importance of the nonmotor tail in differentially controlling the physiological functions of the budding yeast kinesin-8, Kip3. We demonstrate that the tailless Kip3 motor domain adequately governs microtubule dynamics at the bud tip to allow spindle positioning in early mitosis. Notably, discrete regions of the tail mediate specific functions of Kip3 on astral and spindle microtubules. The region proximal to the motor domain operates to spatially regulate astral microtubule stability, while the distal tail serves a previously unrecognized role to control the timing of mitotic spindle disassembly. These findings provide insights into how nonmotor tail domains differentially control kinesin functions in cells and the mechanisms that spatiotemporally control the stability of cellular microtubules.


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo , Alelos , Anáfase , Mutação com Ganho de Função , Relação Estrutura-Atividade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...