Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Pediatr Cardiol ; 11(3): 219-230, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10978715

RESUMO

The physiologic diagnosis of heart failure has changed very little over the past several decades: heart failure is the inability of the cardiac output to meet the metabolic demands of the organism. The clinical definition of heart failure (also relatively unchanged) describes it as ventricular dysfunction that is accompanied by reduced exercise tolerance. Our understanding of the true pathophysiologic processes involved in heart failure have, however, changed. We have moved from thinking of heart failure as primarily a circulatory phenomenon to seeing it as a pathophysiologic state under the control of multiple complex systems. Over the past several years the dramatic explosion of research in the fields of immunology and immunopathology have added an additional piece to the puzzle that defines heart failure and have lead to an understanding of heart failure, at least in some part, as an 'inflammatory disease'. In this review we will examine several of the key inflammatory mediators as they relate to heart failure while at the same time attempting to define the source(s) of these mediators. We will examine key elements of the inflammatory cascade as they relate to heart failure such as: cytokines, 'proximal mediators' (e.g. NF-kappaB), and distal mediators (e.g. nitric oxide). We will end with a discussion of the potential therapeutic role of anti-inflammatory strategies in the future treatment of heart failure. Also, throughout the review we will examine the potential pitfalls encountered in applying bench discoveries to the bedside as have been learned in the field of septic shock research.

2.
Science ; 272(5265): 1163-6, 1996 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-8662452

RESUMO

Models of biogenic carbon (BC) flux assume that short herbivorous food chains lead to high export, whereas complex microbial or omnivorous food webs lead to recycling and low export, and that export of BC from the euphotic zone equals new production (NP). In the Gulf of St. Lawrence, particulate organic carbon fluxes were similar during the spring phytoplankton bloom, when herbivory dominated, and during nonbloom conditions, when microbial and omnivorous food webs dominated. In contrast, NP was 1.2 to 161 times greater during the bloom than after it. Thus, neither food web structure nor NP can predict the magnitude or patterns of BC export, particularly on time scales over which the ocean is in nonequilibrium conditions.

3.
Phys Rev D Part Fields ; 41(12): 3612-3619, 1990 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10012305
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...