Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pain Res ; 13: 3409-3413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364824

RESUMO

BACKGROUND: We conducted a chart review of prospectively collected data in order to demonstrate the safety and efficacy of an innovative technique of pleural and mediastinal drain injections. METHODS: Patients who had undergone cardiac surgery and who continued to have pain despite the use of a multimodal pain protocol received injections of 20 mL of 0.25% bupivacaine in pleural and/or mediastinal chest drainage tubes. RESULTS: Patients were evaluated for the incidence mediastinitis, osteitis, and deep sternal wound infection as well as the speed and intensity of pain relief. The odds ratio of infection in the infused group was 0.955 (CI = 0.4705, 1.9384). The adjusted mean "decrease in pain" was 4.01 (SEM = 0.15 and 95% CI = 3.78, 4.38), using the 11-point Likert Numerical Rating Scale. The mean adjusted "time to maximum pain relief" was 8.33 minutes (SEM = 0.42 and 95% CI = 7.50, 9.15). CONCLUSION: This technique is a powerful, safe, and efficient tool in the armamentarium of pain management and its growing use within our institution has provided a substantial benefit in the treatment of early post-operative pain.

2.
Int J Mol Sci ; 19(7)2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986417

RESUMO

The cytochromes P450 are drug metabolizing enzymes in the body that typically react with substrates through a monoxygenation reaction. During the catalytic cycle two reduction and protonation steps generate a high-valent iron (IV)-oxo heme cation radical species called Compound I. However, with sufficient reduction equivalents present, the catalytic cycle should be able to continue to the reduced species of Compound I, called Compound II, rather than a reaction of Compound I with substrate. In particular, since electron transfer is usually on faster timescales than atom transfer, we considered this process feasible and decided to investigate the reaction computationally. In this work we present a computational study using density functional theory methods on active site model complexes alongside quantum mechanics/molecular mechanics calculations on full enzyme structures of cytochrome P450 enzymes. Specifically, we focus on the relative reactivity of Compound I and II with a model substrate for O⁻H bond activation. We show that generally the barrier heights for hydrogen atom abstraction are higher in energy for Compound II than Compound I for O⁻H bond activation. Nevertheless, for the activation of such bonds, Compound II should still be an active oxidant under enzymatic conditions. As such, our computational modelling predicts that under high-reduction environments the cytochromes P450 can react with substrates via Compound II but the rates will be much slower.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/metabolismo , Ferro/metabolismo , Teoria Quântica , Catálise , Domínio Catalítico , Transporte de Elétrons , Heme/química , Humanos , Hidrogênio/química , Ferro/química , Conformação Molecular , Simulação de Dinâmica Molecular , Oxidantes/química , Oxigênio/química
3.
J Am Chem Soc ; 139(29): 9855-9866, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28657747

RESUMO

Prolyl-4-hydroxylase (P4H) is a non-heme iron hydroxylase that regio- and stereospecifically hydroxylates proline residues in a peptide chain into R-4-hydroxyproline, which is essential for collagen cross-linking purposes in the human body. Surprisingly, in P4H, a strong aliphatic C-H bond is activated, while thermodynamically much weaker aliphatic C-H groups, that is, at the C3 and C5 positions, are untouched. Little is known on the origins of the high regio- and stereoselectivity of P4H and many non-heme and heme enzymes in general, and insight into this matter may be relevant to Biotechnology as well as Drug Development. The active site of the protein contains two aromatic residues (Tyr140 and Trp243) that we expected to be crucial for guiding the regioselectivity of the reaction. We performed a detailed quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) study on wild-type and mutant structures. The work shows that Trp243 is involved in key protein loop-loop interactions that affect the shape and size of the substrate binding pocket and its mutation has major long-range effects. By contrast, the Tyr140 residue is shown to guide the regio- and stereoselectivity by holding the substrate and ferryl oxidant in a specific orientation through hydrogen bonding and π-stacking interactions. Compelling evidence is found that the Tyr140 residue is involved in expelling the product from the binding pocket after the reaction is complete. It is shown that mutations where the hydrogen bonding network that involves the Tyr140 and Trp243 residues is disrupted lead to major changes in folding of the protein and the size and shape of the substrate binding pocket. Specifically, the Trp243 residue positions the amino acid side chains of Arg161 and Glu127 in specific orientations with substrate. As such, the P4H enzyme is a carefully designed protein with a subtle and rigid secondary structure that enables the binding of substrate, guides the regioselectivity, and expels product efficiently.


Assuntos
Carbono/química , Hidrogênio/química , Ferro/química , Oxidantes/química , Prolil Hidroxilases/química , Prolil Hidroxilases/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Prolil Hidroxilases/genética , Conformação Proteica , Teoria Quântica , Estereoisomerismo
4.
Biochem Soc Trans ; 37(Pt 6): 1214-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909249

RESUMO

We have applied search algorithms to expression databases to identify genes whose expression is restricted to the endothelial cell. Such genes frequently play a critical role in endothelial biology and angiogenesis. Two such genes are the roundabout receptor Robo4 and the ECSCR (endothelial-cell-specific chemotaxis regulator). Endothelial cells express both Robo1 and Robo4, which we have knocked down using siRNA (small interfering RNA) and then studied the effect in a variety of in vitro assays. Both Robo4 and Robo1 knockdown inhibited in vitro tube formation on Matrigel. Transfection of Robo4 into endothelial cells increased the number of filopodial extensions from the cell, but failed to do so in Robo1-knockdown cells. Separate immunoprecipitation studies showed that Robo1 and Robo4 heterodimerize. We conclude from this and other work that a heteroduplex of Robo1 and Robo4 signals through WASP (Wiskott-Aldrich syndrome protein) and other actin nucleation-promoting factors to increase the number of filopodia and cell migration. Knockdown of the transmembrane ECSCR protein in endothelial cells also reduced chemotaxis and impaired tube formation on Matrigel. Yeast two-hybrid analysis and immunoprecipitation studies showed that, in contrast with the roundabouts, ECSCR binds to the actin-modulatory filamin A. We conclude that all three of these genes are critical for effective endothelial cell migration and, in turn, angiogenesis.


Assuntos
Células Endoteliais/fisiologia , Proteínas de Membrana , Receptores de Superfície Celular , Animais , Proteínas Reguladoras de Apoptose , Movimento Celular/fisiologia , Bases de Dados Genéticas , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas Roundabout
5.
FASEB J ; 23(2): 513-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18948384

RESUMO

This study aimed to further elucidate the function of Roundabout proteins in endothelium. We show that both Robo1 and Robo4 are present in human umbilical vein endothelial cells (HUVECs) and have knocked expression down using small interfering RNA (siRNA) technology. Roundabout knockout endothelial cells were then studied in a variety of in vitro assays. We also performed a yeast 2-hybrid analysis using the intracellular domain of Robo4 as bait to identify interacting proteins and downstream signaling. Both Robo1 and Robo4 siRNA knockdown and transfection of Robo4-green fluorescent protein inhibited endothelial cell movement and disrupted tube formation on Matrigel. Consistent with a role in regulating cell movement, yeast 2-hybrid and glutathione-S-transferase pulldown analyses show Robo4 binding to a Wiskott-Aldrich syndrome protein (WASP), neural Wiskott-Aldrich syndrome protein, and WASP-interacting protein actin-nucleating complex. We have further shown that Robo1 forms a heterodimeric complex with Robo4, and that transfection of Robo4GFP into HUVECs induces filopodia formation. We finally show using Robo1 knockdown cells that Robo1 is essential for Robo4-mediated filopodia induction. Our results favor a model whereby Slit2 binding to a Robo1/Robo4 heterodimer activates actin nucleation-promoting factors to promote endothelial cell migration.


Assuntos
Actinas/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Pseudópodes/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Movimento Celular , Células Cultivadas , Chlorocebus aethiops , Humanos , Proteínas do Tecido Nervoso/genética , Multimerização Proteica , RNA Interferente Pequeno/genética , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Transdução de Sinais , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...