Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Phytomedicine, v. 128, 155414, jun. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5286

RESUMO

Background Chagas disease and leishmaniasis affect a significant portion of the Latin American population and still lack efficient treatments. In this context, natural products emerge as promising compounds for developing more effective therapies, aiming to mitigate side effects and drug resistance. Notably, species from the Amaryllidaceae family emerge as potential reservoirs of antiparasitic agents due to the presence of diverse biologically active alkaloids. Purpose To assess the anti-Trypanosoma cruzi and anti-Leishmania infantum activity of five isolated alkaloids from Hippeastrum aulicum Herb. (Amaryllidaceae) against different life stages of the parasites using in silico and in vitro assays. Furthermore, molecular docking was employed to evaluate the interaction of the most active alkaloids. Methods Five natural isoquinoline alkaloids isolated in suitable quantities for in vitro testing underwent preliminary in silico analysis to predict their potential efficacy against Trypanosoma cruzi (amastigote and trypomastigote forms) and Leishmania infantum (amastigote and promastigote forms). The in vitro antiparasitic activity and mammalian cytotoxicity were investigated with a subsequent comparison of both analysis (in silico and in vitro) findings. Additionally, this study employed the molecular docking technique, utilizing cruzain (T. cruzi) and sterol 14α-demethylase (CYP51, L. infantum) as crucial biological targets for parasite survival, specifically focusing on compounds that exhibited promising activities against both parasites. Results Through computational techniques, it was identified that the alkaloids haemanthamine (1) and lycorine (8) were the most active against T. cruzi (amastigote and trypomastigote) and L. infantum (amastigote and promastigote), while also revealing unprecedented activity of alkaloid 7‑methoxy-O-methyllycorenine (6). The in vitro analysis confirmed the in silico tests, in which compound 1 presented the best activities against the promastigote and amastigote forms of L. infantum with half-maximal inhibitory concentration (IC50) 0.6 µM and 1.78 µM, respectively. Compound 8 exhibited significant activity against the amastigote form of T. cruzi (IC50 7.70 µM), and compound 6 demonstrated activity against the trypomastigote forms of T. cruzi and amastigote of L. infantum, with IC50 values of 89.55 and 86.12 µM, respectively. Molecular docking analyses indicated that alkaloids 1 and 8 exhibited superior interaction energies compared to the inhibitors. Conclusion The hitherto unreported potential of compound 6 against T. cruzi trypomastigotes and L. infantum amastigotes is now brought to the forefront. Furthermore, the acquired dataset signifies that the isolated alkaloids 1 and 8 from H. aulicum might serve as prototypes for subsequent structural refinements aimed at the exploration of novel leads against both T. cruzi and L. infantum parasites.

2.
Braz. J. Pharm. Sci. (Online) ; 58: e20459, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403730

RESUMO

Abstract Free-living amoebae of the genus Acanthamoeba are the causative agents of granulomatous encephalitis and keratitis, severe human infections. Bioactive compounds from plants are recognized as an alternative source for the development of new drugs. The Amaryllidaceae is a botanical family able to synthesize a very specific and consistent group of biologically active isoquinoline-like alkaloids. The alkaloidal fractions from the Brazilian species Hippeastrum canastrense, H. diniz-cruziae, H. puniceum, and Crinum x amabile, along with the alkaloid lycorine, were investigated against Acanthamoeba castellanii. The in vitro assays were performed with distinct concentrations of lycorine and alkaloidal fractions, while the cell viability was evaluated by the MTT method upon MDCK cells. Chlorhexidine 0.02% was used as the positive control. The effect of alkaloid fractions was concentration dependent, and 2000 µg mL-1 of H. canastrense and H. diniz-cruziae provided a 100% inhibition. At concentrations of 250, 500, and 1000 µg mL-1, the H. diniz-cruziae alkaloidal fraction showed the lowest cytotoxic effect (5%-7%) and remarkable anti-amoebic activity, demonstrating values of IC50 285.61 µg mL-1, low cytotoxicity (5%-7%), and selectivity index (7.0). Taken together, the results are indicative of the great potential that the alkaloids from H. diniz-cruziae have as new candidates for anti-amoebicidal compounds


Assuntos
Acanthamoeba castellanii/classificação , Alcaloides/administração & dosagem , Amaryllidaceae/classificação , Produtos Biológicos , Preparações Farmacêuticas/análise , Células Madin Darby de Rim Canino , Compostos Fitoquímicos
3.
Molecules ; 22(9)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28858260

RESUMO

The plant family Amaryllidaceae is well-known for its unique alkaloid constituents, which exhibit a wide range of biological activities. Its representative, Amaryllis belladonna, has a geographical distribution covering mainly southern Africa, where it has significant usage in the traditional medicine of the native people. In this study, A. belladonna samples collected in Brazil were examined for alkaloid content. Alkaloid profiles of A. belladonna bulbs were generated by a combination of chromatographic, spectroscopic and spectrometric methods, including GC-MS and 2D NMR. In vitro screening against four different parasitic protozoa (Trypanosoma cruzi, T. brucei rhodesiense, Leishmania donovani and Plasmodium falciparum) was carried out using the A. belladonna crude methanol extract, as well as three of its alkaloid isolates. Twenty-six different Amaryllidaceae alkaloids were identified in the A. belladonna bulb samples, and three of them were isolated. Evidence for their respective biosynthetic pathways was afforded via their mass-spectral fragmentation data. Improved data for 1-O-acetylcaranine was provided by 2D NMR experiments, together with new ¹H-NMR data for buphanamine. The crude extract and 3-O-acetylhamayne exhibited good antiprotozoal activity in vitro, although both with a high cytotoxic index.


Assuntos
Alcaloides de Amaryllidaceae/química , Amaryllidaceae/química , Antiprotozoários/química , Extratos Vegetais/química , Alcaloides de Amaryllidaceae/isolamento & purificação , Alcaloides de Amaryllidaceae/farmacologia , Antiprotozoários/isolamento & purificação , Antiprotozoários/farmacologia , Vias Biossintéticas , Leishmania donovani/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
4.
Rev. bras. farmacogn ; 25(4): 353-355, July-Aug. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-763210

RESUMO

AbstractA new lycosinine derivative, 9-O-demethyllycosinine B, was isolated from the native Brazilian Hippeastrum breviflorumHerb., Amaryllidaceae, along with the well-known alkaloids lycosinine B and lycorine. The structure of the new compound was established by physical and spectroscopic methods. 9-O-demethyllycosinine B is the third lycosinine variant identified in the Amaryllidaceae family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...