Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Signal Transduct ; 2011: 603290, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21776387

RESUMO

Schistosoma mansoni, one of the causative agents of schistosomiasis, has a complex life cycle infecting over 200 million people worldwide. Such a successful and prolific parasite life cycle has been shown to be dependent on the adaptive interaction between the parasite and hosts. Tyrosine kinases (TKs) play a key role in signaling pathways as demonstrated by a large body of experimental work in eukaryotes. Furthermore, comparative genomics have allowed the identification of TK homologs and provided insights into the functional role of TKs in several biological systems. Finally, TK structural biology has provided a rational basis for obtaining selective inhibitors directed to the treatment of human diseases. This paper covers the important aspects of the phospho-tyrosine signaling network in S. mansoni, Caenorhabditis elegans, and humans, the main process of functional diversification of TKs, that is, protein-domain shuffling, and also discusses TKs as targets for the development of new anti-schistosome drugs.

2.
BMC Genomics ; 12: 215, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21548963

RESUMO

BACKGROUND: Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The Schistosoma mansoni genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the S. mansoni predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets. RESULTS: We have identified 252 ePKs, which corresponds to 1.9% of the S. mansoni predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that S. mansoni has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in S. mansoni or belong to an expanded family in this parasite. Only 16 S. mansoni ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite. CONCLUSIONS: Our approach has improved the functional annotation of 40% of S. mansoni ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of S. mansoni in response to diverse environments during the parasite development, vector interaction, and host infection.


Assuntos
Proteínas Quinases/classificação , Proteínas Quinases/metabolismo , Proteômica , Schistosoma mansoni/enzimologia , Schistosoma mansoni/parasitologia , Animais , Domínio Catalítico , Cadeias de Markov , Filogenia , Proteínas Quinases/química , Proteoma/química , Proteoma/classificação , Proteoma/metabolismo , Schistosoma mansoni/citologia , Transdução de Sinais
3.
Nature ; 460(7253): 352-8, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19606141

RESUMO

Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.


Assuntos
Genoma Helmíntico/genética , Schistosoma mansoni/genética , Animais , Evolução Biológica , Éxons/genética , Genes de Helmintos/genética , Interações Hospedeiro-Parasita/genética , Íntrons/genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/embriologia , Schistosoma mansoni/fisiologia , Esquistossomose mansoni/tratamento farmacológico , Esquistossomose mansoni/parasitologia
4.
Curr Opin Microbiol ; 12(4): 422-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19577949

RESUMO

Schistosome parasites exhibit separate sexes and with the evolution of sex they have developed an intricate relationship between the male and female worms such that signals between the male and female that are initiated at the time of mating, regulate female reproductive development and subsequent egg production. As the egg stage is responsible for pathogenesis and transmission, understanding the molecular mechanisms of female reproductive development may identify novel targets for the control of transmission and morbidity of this major world public health problem. Recent data have demonstrated that the pairing process, proliferation, and differentiation of vitelline cells, expression of female-specific genes and egg embryogenesis are regulated by the TGFbeta pathway and protein tyrosine kinases.


Assuntos
Schistosoma/crescimento & desenvolvimento , Transdução de Sinais , Animais , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida , Masculino , Modelos Biológicos , Proteínas Tirosina Quinases/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Biochem Biophys Res Commun ; 360(1): 163-72, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17588535

RESUMO

A novel protein tyrosine kinase (PTK) was identified in Schistosoma mansoni and designated SmFes. SmFes exhibits the characteristic features of Fes/Fps/Fer (fes, feline sarcoma; fps, Fujinami poultry sarcoma; fer, fes related) PTKs, containing three coiled-coil regions, an SH2 (Src-homology-2) and a TK (tyrosine kinase catalytic) domain signature. SmFes is the first gene from the Fes/Fps/Fer family identified in S. mansoni, and is a single copy gene. Phylogenetic analyses revealed that SmFes is most closely related to its invertebrate orthologues. The assembly of the SmFes cDNA and genomic sequences indicated the presence of 18 introns in SmFes. Comparison of its genomic structure with those of human Fps/Fes and Drosophila Fps indicates that intron positions are conserved within the region encoding the kinase domain. Analysis of partial cDNA clones showed the presence of a 9 bp insertion at the 3' end of exon 10, producing two different cDNA populations, pointed as an alternative splicing event. In addition, an allele of SmFes containing a 15 bp insertion was observed in the genomic sequence. Quantitative RT-PCR indicated that the overall transcription level of SmFes is rather low in all parasite developmental stages. Moreover, SmFes mRNA levels decrease progressively after cercarial transformation, consistent with a role for the corresponding protein in the early stages of infection.


Assuntos
Evolução Molecular , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Schistosoma mansoni/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Proteínas Tirosina Quinases/metabolismo , Schistosoma mansoni/genética , Homologia de Sequência do Ácido Nucleico
6.
Exp Parasitol ; 116(3): 225-32, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17350619

RESUMO

Protein Tyrosine Kinases (PTKs) are important molecules in intra- and inter-cellular communication, playing a major role in signal transduction processes. We have previously identified and characterized the molecular structure of a new PTK in Schistosoma mansoni, SmFes. SmFes exhibits the characteristic features of Fes/Fps protein tyrosine kinase subfamily of which it is the first member described in helminths. Herein, we show that genes orthologous to SmFes are also present in other Schistosoma species and the transcript is detected in Schistosoma japonicum. The SmFes protein was detected at all the main life-cycle stages and was most abundant in cercariae and newly-transformed schistosomula. However, no protein was detected in schistosomula maintained in vitro for 7 days. By immunolocalization assays we showed that SmFes is particularly concentrated at the terebratorium of miracidia and tegument of cercaria and schistosomula skin-stage. These findings suggest that SmFes may play a role in signal transduction pathways involved in larval transformation after penetration into intermediate and definitive hosts.


Assuntos
Proteínas Proto-Oncogênicas c-fes/fisiologia , Schistosoma mansoni/enzimologia , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Biomphalaria , Western Blotting , Sequência Conservada , Feminino , Regulação Enzimológica da Expressão Gênica , Interações Hospedeiro-Parasita/fisiologia , Masculino , Camundongos , Modelos Estruturais , Proteínas Proto-Oncogênicas c-fes/biossíntese , Proteínas Proto-Oncogênicas c-fes/química , Proteínas Proto-Oncogênicas c-fes/genética , Schistosoma mansoni/genética , Schistosoma mansoni/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...