Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-11089015

RESUMO

We investigate the explosive fragmentation process in two dimensions using molecular-dynamics simulations. We show that the mass distribution of fragments follows a power law, with a scaling exponent that is strongly dependent on the macroscopic characteristics of the system prior to the explosion process. In particular, for thermalized initial configurations at low temperatures, we observe that the exponent is close to -1. We suggest that this result can be interpreted in terms of a multiplicative fracture process.

2.
Artigo em Inglês | MEDLINE | ID: mdl-11046300

RESUMO

We analyze the transport properties of a neutral tracer in a carrier fluid flowing through percolationlike porous media with spatial correlations. We model convection in the mass transport process using the velocity field obtained by the numerical solution of the Navier-Stokes and continuity equations in the pore space. We find that the resulting statistical properties of the tracer show a transition from a subdiffusion regime at low Peclet number to an enhanced diffusion regime at high Peclet number.

3.
Artigo em Inglês | MEDLINE | ID: mdl-11138125

RESUMO

We study the flow of fluid in porous media in dimensions d=2 and 3. The medium is modeled by bond percolation on a lattice of L(d) sites, while the flow front is modeled by tracer particles driven by a pressure difference between two fixed sites ("wells") separated by Euclidean distance r. We investigate the distribution function of the shortest path connecting the two sites, and propose a scaling ansatz that accounts for the dependence of this distribution (i) on the size of the system L and (ii) on the bond occupancy probability p. We confirm by extensive simulations that the ansatz holds for d=2 and 3. Further, we study two dynamical quantities: (i) the minimal traveling time of a tracer particle between the wells when the total flux is constant and (ii) the minimal traveling time when the pressure difference is constant. A scaling ansatz for these dynamical quantities also includes the effect of finite system size L and off-critical bond occupation probability p. We find that the scaling form for the distribution functions for these dynamical quantities for d=2 and 3 is similar to that for the shortest path, but with different critical exponents. Our results include estimates for all parameters that characterize the scaling form for the shortest path and the minimal traveling time in two and three dimensions; these parameters are the fractal dimension, the power law exponent, and the constants and exponents that characterize the exponential cutoff functions.

4.
Phys Rev B Condens Matter ; 54(6): 3910-3915, 1996 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-9986290
7.
Phys Rev B Condens Matter ; 49(18): 13208-13210, 1994 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10010241
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA